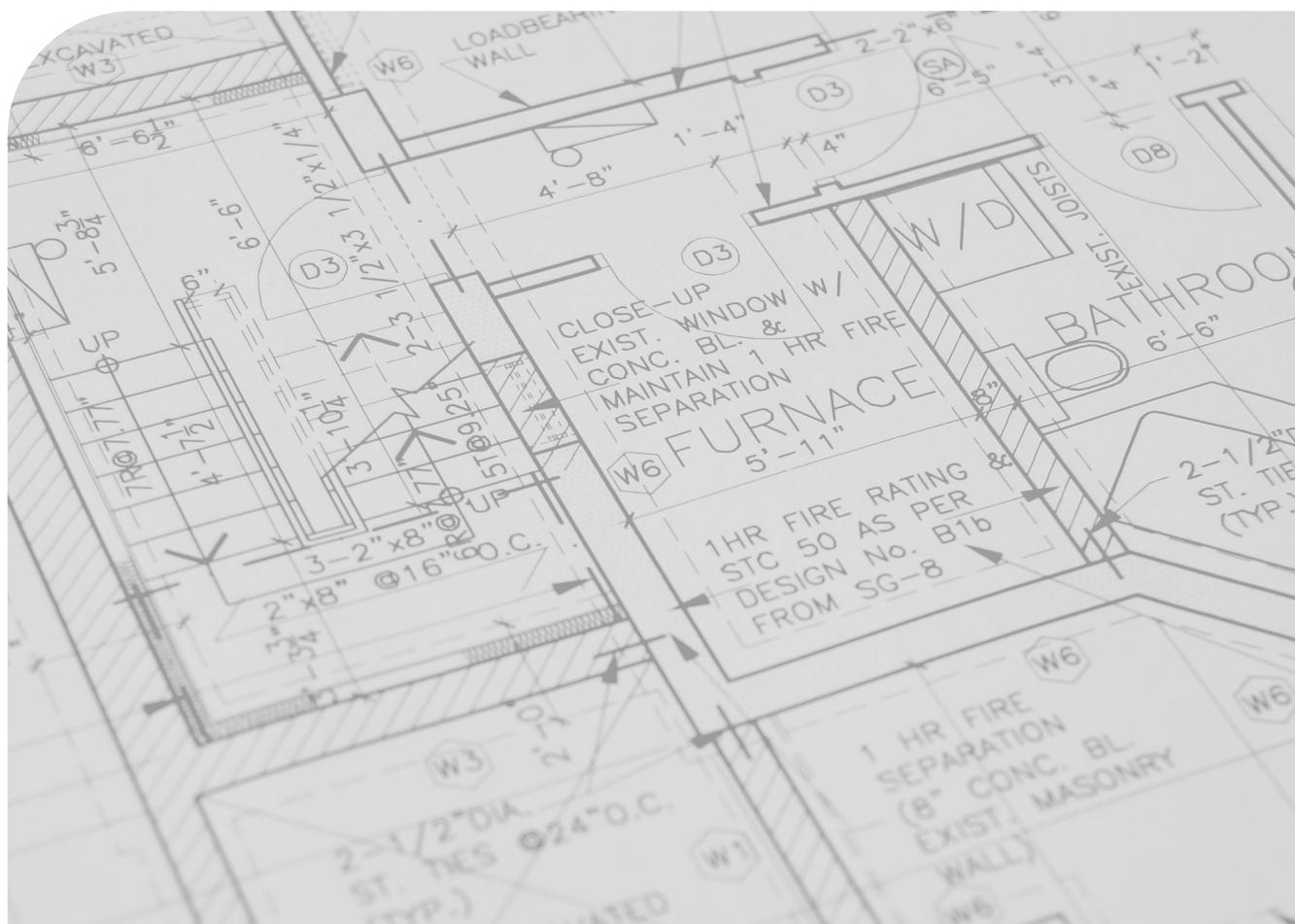


# ARES 440 TEC ERP

# ARES 550 TEC ERP


# ARES 660 TEC ERP

# ARES 770 TEC ERP

# ARES 900 TEC ERP

**IE****Instructions and  
recommendations**

\*1.043689ENG\*





Warning this manual contains the exclusive instructions for use for professionally qualified installers and/or maintenance technicians, in compliance with laws in force.  
The user in charge of the system is NOT authorised to work on the boiler.  
The manufacturer will not be held liable in the case of damage to people, animals or property due to the failure to observe the instructions contained in the manuals supplied with the boiler.

## INDEX

|                                                                 |           |
|-----------------------------------------------------------------|-----------|
| <b>1 General information.....</b>                               | <b>4</b>  |
| 1.1 general warnings.....                                       | 4         |
| 1.2 Symbols used in the manual.....                             | 5         |
| 1.3 Compliant use of the appliance.....                         | 5         |
| 1.4 Information for the system manager.....                     | 5         |
| 1.5 Safety warnings .....                                       | 6         |
| 1.6 Technical data plate .....                                  | 7         |
| 1.7 Water treatment .....                                       | 8         |
| 1.8 Boiler frost protection.....                                | 8         |
| <b>2 Technical characteristics and dimensions.....</b>          | <b>9</b>  |
| 2.1 Technical characteristics .....                             | 9         |
| 2.2 View of main parts.....                                     | 10        |
| 2.3 Dimensions.....                                             | 11        |
| 2.4 Operating data / general characteristics .....              | 12        |
| 2.4.1 Technical data.....                                       | 13        |
| 2.4.2 Determining the primary circuit pump or boiler pump ..... | 14        |
| <b>3 Instructions for installation.....</b>                     | <b>15</b> |
| 3.1 General recommendations .....                               | 15        |
| 3.2 Regulations for installation.....                           | 15        |
| 3.3 Preventative checks and adaptation of the system .....      | 15        |
| 3.4 Packaging.....                                              | 16        |
| 3.5 Operation to unload and remove the packaging .....          | 17        |
| 3.6 Positioning the heating control unit.....                   | 18        |
| 3.7 Flue exhaust pipe connection.....                           | 19        |
| 3.7.1 Flue exhaust manifold connection .....                    | 19        |
| 3.8 Connecting the boiler .....                                 | 20        |
| 3.9 Gas connection.....                                         | 21        |
| 3.10 Connection .....                                           | 22        |
| 3.11 System filling and emptying.....                           | 24        |
| 3.12 Electrical connections .....                               | 25        |
| 3.13 First ignition.....                                        | 33        |
| 3.14 On-site measurement of the combustion efficiency.....      | 34        |
| 3.14.1 Enable the calibration function.....                     | 34        |
| 3.14.2 Positioning the probes.....                              | 34        |
| 3.15 Burner adjustment.....                                     | 34        |
| 3.16 Emergency and safety operations .....                      | 37        |
| <b>4 Inspections and maintenance .....</b>                      | <b>38</b> |
| 4.1 Instructions for inspection and maintenance .....           | 38        |
| 4.2 Programming the operation parameters .....                  | 44        |
| 4.3 Practical connection diagram .....                          | 46        |
| 4.4 Error code .....                                            | 48        |



### Instructions on how to correctly dispose of the product.

At the end of its life, this appliance must not be disposed of as mixed municipal waste.

It is mandatory to separate this type of waste so that the materials making up the appliance can be recycled and reused. Contact authorised operators for disposal of this type of appliance. Incorrect management of waste and its disposal has potential negative effects on the environment and on human health. The symbol on the appliance represents the prohibition of disposing of the product as mixed municipal waste.

The company **IMMERGAS S.p.A.**, with registered office in via Cisa Ligure 95 42041 Brescello (RE), declares that the design, manufacturing and after-sales assistance processes comply with the requirements of standard **UNI EN ISO 9001:2015**.

For further details on the product CE marking, request a copy of the Declaration of Conformity from the manufacturer, specifying the appliance model and the language of the country.

The manufacturer declines all liability due to printing or transcription errors, reserving the right to make any modifications to its technical and commercial documents without forewarning.



# 1 GENERAL INFORMATION

## 1.1 GENERAL WARNINGS

The instruction handbook is an integral and essential part of the product and must be kept safe by the user.

Read the warnings contained in the handbook carefully, as they provide important instructions regarding installation, user and maintenance safety.

Keep the handbook safe for future consultation.

The appliance must be installed and maintained in accordance with regulations in force, pursuant to the instructions of the manufacturer, the state of the art and by authorised and qualified personnel, in accordance with the law.

Domestic hot water production systems **MUST** be built entirely with compliant materials.

Professionally qualified personnel means staff with specific technical skills in the sector of heating system parts for civil use, hot water production for domestic use and maintenance. This personnel must have the authorisations required by legislation in force.

Incorrect installation or poor maintenance can cause injury to persons and animals and damage to objects, for which the manufacturer is not liable.

Before carrying out any cleaning or maintenance operations, cut the appliance off from the power mains by acting on the switch on the system and/or using the cut-off devices.

Do not obstruct the intake/exhaust pipe terminals.

In case of breakdown and/or poor operation of the appliance, switch it off, and do not attempt in any way to repair it or intervene directly. Only contact an authorised company that has been authorised in accordance with the law.

Any repairs to the products must be carried out by an authorised company only, using original spare parts only. Failure to observe the above can jeopardise the safety of the appliance and will void the warranty.

The guarantee the efficiency of the appliance and its correct operation it is essential for authorised company to carry out annual maintenance.

If the appliance is put out of use for downtime, any part that is susceptible to posing a potential source of danger must be made safe. Before re-commissioning an appliance that has been put out of use, proceed to washing the domestic hot water production system, making water flow through it for the amount of time required to change the water completely.

If the appliance is sold or transferred to another owner or if the owner moves, leaving the appliance behind, always ensure the handbook accompanies the appliance so that it may be consulted by the new owner and/or installer.

All appliances with optionals or kits (including electric) must only use original spare parts.

The appliance must only be employed for its expressly foreseen use. Any other use must be considered improper and therefore dangerous.



### ATTENTION!

The heat unit must be installed so as to avoid, under the envisioned operating conditions, the liquid contained in it from freezing and avoid exposing the command and control parts to temperatures below -15°C and over +40°C.

The heat unit must be protected from climatic/environmental variations by:

- insulating the hydraulic and condensation exhaust pipes
- adopting specific anti-freeze products in the hydraulic system.

## 1.2 SYMBOLS USED IN THE MANUAL

When reading this manual, pay special attention to the parts marked with these symbols:



**DANGER!**  
Serious danger to safety and life



**ATTENTION!**  
Possibly dangerous situation for the product and environment



**NOTE!**  
Tips for the user



**DANGER!**  
Scalding hazard!



**OBLIGATION!**  
Wear protective gloves

## 1.3 COMPLIANT USE OF THE APPLIANCE



The ARES Tec ErP appliance was built based on the current technical level and recognised technical safety rules. Nevertheless, following improper use the safety and life of the user or other people may be exposed to danger, i.e. damage to the appliance or other objects.

The appliance is designed for operation in hot water circulating heating systems.

Any other use is considered improper.

Immergas will not be held liable for any damage resulting from improper use.

Any use in accordance with the envisioned purposes includes the strict observance of the instructions in this manual.

## 1.4 INFORMATION FOR THE SYSTEM MANAGER



The user must be instructed in the use and operation of his/her heating system, in particular:

- Deliver these instructions to the user, as well as the other documents relative to the appliance contained in the packaging in an envelope. **The user must keep this documentation safe so that it is available for future consultation.**
- Inform the user of the importance of aeration vents and the flue exhaust system, highlighting how essential they are and how it is strictly forbidden to change them.
- Inform the user on how to control the water pressure in the system as well as the operations required to restore it.
- Inform the user on how to correctly regulate the temperature, control units/thermostats and radiators in order to save energy.
- Remember that in compliance with the laws in force, the equipment must be inspected and maintained according to the requirements and on the basis set down by the manufacturer.
- If the appliance is sold or transferred to another owner or if the owner moves, leaving the appliance behind, always ensure the manual accompanies the appliance so that it may be consulted by the new owner and/or installer.

**The manufacturer will not be held liable in the case of damage to people, animals or property due to the failure to observe the instructions contained in this manual.**



## GENERAL INFORMATION

### 1.5 SAFETY WARNINGS



#### ATTENTION!

The appliance must not be used by children.

The appliance can be used only by adults who have read the instruction manual for the user / manager with care.

Children must be supervised to ensure they do not play or tamper with the appliance.



#### ATTENTION!

Installation, adjustment and maintenance of the appliance must be carried out by professionally authorised company, in compliance with regulations and provisions in force, as incorrect installation can cause damage to people, animals and property, for which the manufacturer will not be held liable.



#### DANGER!

NEVER attempt to carry out maintenance or repairs on the boiler of your own initiative.

Any work must be carried out by professionally qualified staff; we advise you to stipulate a maintenance contract.

Poor or irregular maintenance can compromise the operational safety of the appliance and cause damage to people, animals and property for which the manufacturer will not be held liable.



#### Changes to parts connected to the appliance (after installation of the appliance)

Do not make changes to the following elements:

- to the boiler
- to the gas, air, water and power supply lines
- to the flue pipe, safety valve and exhaust pipe
- to the constructive elements that affect the operational safety of the appliance.



#### ATTENTION!

To tighten or loosen the screw-attached fittings, use suitable wrenches only.

Improper use and/or unsuitable tools can cause damage (for ex. water and gas leaks).



#### ATTENTION!

##### Instructions for appliances running on propane gas

Make sure that the gas tank has been deaerated prior to installing the appliance.

For a thorough deaeration of the tank contact the liquid gas supplier and in any case authorised company, in accordance with the law. Ignition problems can arise if the tank is not thoroughly deaerated.

In this case contact the liquid gas tank supplier.



#### Smell of gas

In case of the smell of gas observe the following safety instructions:

- do not use electric switches
- do not smoke
- do not use the telephone
- shut off the gas cut-off valve
- aerate the room where the gas leak occurred
- notify the gas supply company or a company specialised in the installation and maintenance of heating systems.



#### Explosive and easily flammable substances

Do not use or deposit explosive or easily flammable materials (for ex. petrol, paints, paper) in the room where the appliance is installed.

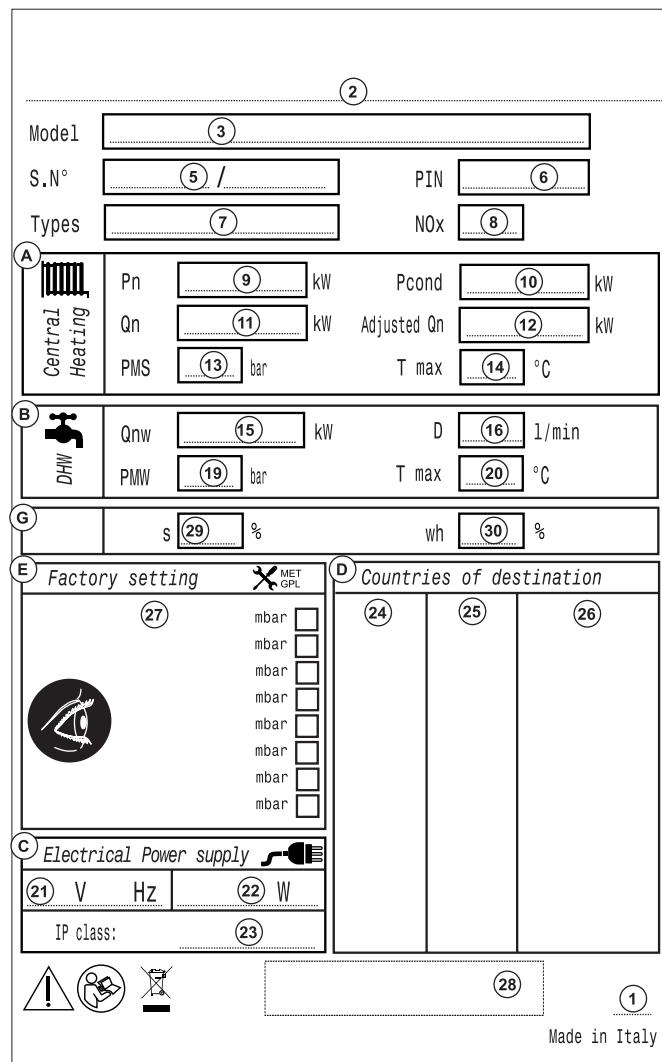


#### ATTENTION!

Do not use the appliance as a base to support any object. Specifically, do not place receptacles containing liquids (Bottles, Glasses, Containers or Detergents) on top of the boiler. If the appliance is installed inside a box, do not insert or place other objects inside it



## 1.6 TECHNICAL DATA PLATE


### CE Marking

certifies conformity of the appliance with the essential safety requirements set down by the directive and applicable European regulations, and operation in compliance with the technical standards of reference.

The CE marking is applied on each appliance with a label.

The CE declaration of conformity, released by the Manufacturer in compliance with the international regulations in force, can be found in the documents enclosed with the product.

**The technical data plate is located under the casing, on the front cross member. There is a DUPLICATE of the plate near the temperature control unit.**



### KEY:

- 1 = CE supervisory body
- 2 = Type of boiler
- 3 = Boiler model
- 5 = (S.N°) Serial Number
- 6 = P.I.N. Product Identification Number
- 7 = Types of approved flue exhaust configurations
- 8 = (NOx) NOx class

A = Characteristics of the heating circuit

9 = (Pn) Useful heat output

10 = (Pcond) Useful output in condensation

11 = (Qn) Maximum heat input

12 = (Adjusted Qn) Adjusted for useful heat input

13 = (PMS) Max. central heating operating pressure

14 = (T max) Max. central heating temperature

A = Characteristics of the DHW circuit

15 = (Qnw) Nominal heat input in DHW mode (if different from Qn)

16 = (D) Specific flow rate for DHW according to EN625-EN13203-1

19 = (PMW) Max. DHW operating pressure

20 = (T max) Max. DHW temperature

C = Electrical features

21 = Electric power supply

22 = Consumption

23 = Degree of protection

D = Countries of destination

24 = Direct and indirect countries of destination

25 = Gas category

26 = Supply pressure

E = Factory settings

27 = Adjusted for gas type X

28 = Space for national brands

G = ErP

29 = Seasonal central heating energy efficiency

30 = Seasonal water heating energy efficiency.



## GENERAL INFORMATION

### 1.7 WATER TREATMENT



Treating the supply water allows you to prevent problems and maintain the functionality and efficiency of the generator over time.



The ideal pH value of the water in the central heating system must be:

| VALUE          | MIN | MAX |
|----------------|-----|-----|
| PH             | 6,5 | 8   |
| HARDNESS (°fr) | 9   | 15  |



To minimise corrosion, it is essential to use a corrosion inhibitor. In order for it to work efficiently, the metal surfaces must be clean.



**ATTENTION!**  
Any damage caused to the boiler, due to the formation of build-up or corrosive water, will not be covered by the warranty.



**ATTENTION!**  
The models only equipped with central heating are NOT suitable for hot water production for human consumption (M.D. 174/2004).

### 1.8 BOILER FROST PROTECTION

#### Activated by default

This protection only cuts in when the electric and gas supply are present. If the electric or gas supply are disconnected and 11 (SM) detects a temperature of between 2 and 5°C when the supply is restored, the appliance responds as indicated in the table below, in pos.2.



Antifreeze products with an inhibitor for central heating systems (specific for multmetal) can be used to ensure efficient protection of the central heating against freezing.



Do not use antifreeze products for car engines since these can damage the water gaskets.

| POS | ANTIFREEZE FUNCTION |     |             |                               |                                                                                |
|-----|---------------------|-----|-------------|-------------------------------|--------------------------------------------------------------------------------|
|     | Supply              |     | 11 - SR (*) | Status of antifreeze function | Actions                                                                        |
|     | Electric            | Gas |             |                               |                                                                                |
| 1   | ON                  | ON  | < 7°C       | ON                            | Burner and Pump ON until T > 15°C                                              |
| 2   | ON                  | OFF | < 5 ÷ 5°C   | OFF                           | INDICATION OF FAULT CODE 16 (see Par. 4.4 ERROR CODES).<br>Ignition inhibited. |
|     | OFF                 | ON  |             | OFF                           | Ignition inhibited.                                                            |
|     | OFF                 | OFF |             | OFF                           | Ignition inhibited.                                                            |

(\*) SR sensor, see Par. 2.2



# 2 TECHNICAL CHARACTERISTICS AND DIMENSIONS

## 2.1 TECHNICAL CHARACTERISTICS

- Heat generator, to heat Low Nox condensation gas
- Comprised of a heat module designed to operate on its own or in a set
- Can be set up directly outside (IP X5D)
- Low water content
- High response speed to load changes
- Single flue exhaust that can be positioned on 3 sides
- Unified flow and return hydraulic manifolds
- Comprised of 2 or more heating elements (between 2 and 7), aluminium/silicon/magnesium casting
- Including total irradiation premixing modulating burners
- None of the heating elements have hydraulic cut-off devices
- Single gas supply pipe
- Modulated power between 25 ÷ 108 kW/element.

### TEMPERATURE CONTROL DEVICES:

- ROOM NTC sensor (every heating element)
- Room Limit Thermostat (every heating element)
- Flow NTC sensor (General)
- Return NTC sensor (General)
- Approved safety thermostat
- BCM global flow probe.

### OTHER SAFETY DEVICES according to the R COLLECTION.

#### POP-UP control panel composed of:

- ON-OFF switch
- HSCP boiler thermoregulation/manager
- BCM (internal cascade management board)
- Protection fuses
- Fan air pressure switch
- Condensation water level sensor
- Gas pressure switch
- Exhaust pressure switch (anti-obstruction).

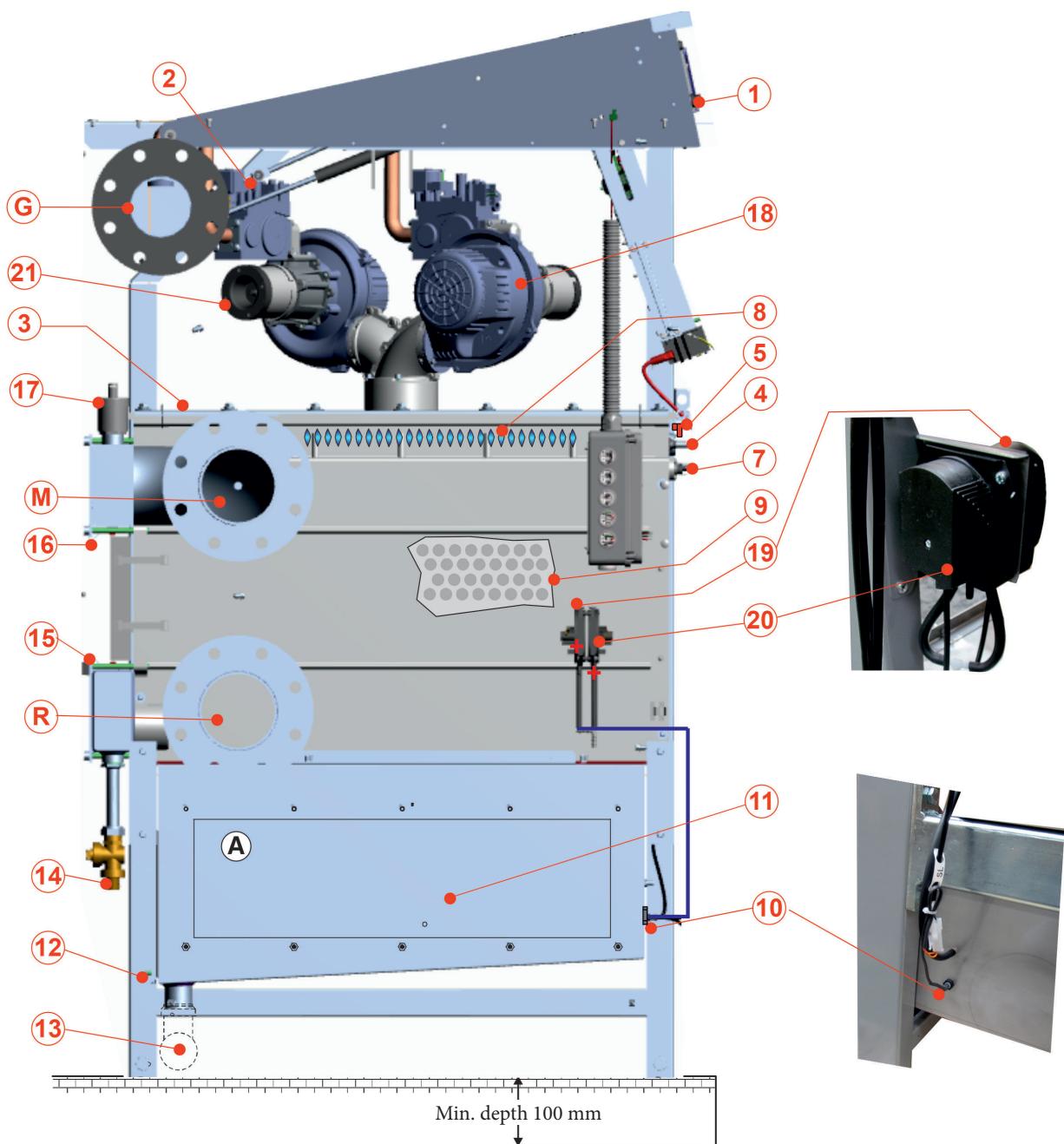
- The entire heating unit is equipped with global temperature control NTC sensors on the flow and return manifolds.

- Integral insulation with non-allergenic synthetic wool.
- Total premix burner, modulating, with "metal foam" radiation combustion chamber. Premixing in the fan. Automatic separating backflow diaphragm from the combustion chamber.
- Sound emissions at maximum power below 52 dBA for models 100-350, 54 dBA for models 440-770 and 56 dBA for 900.
- Operation during heating: determining the instantaneous power through a control microprocessor, with preset comparison parameters between requested temperature (or calculated by the outdoor thermoregulation) and global flow temperature.

- Logic of operation:
  - Possibility of controlling the power of the single heating elements for calibration and/or assistance with reserved access code.
  - Domestic hot water production using a priority NTC probe, for control by a storage tank loading pump or diverter valve, is done with an SHC module that is supplied with the boiler.
  - Possibility of controlling the power of the single heating elements.
  - Heat request control: temperature setpoint and modulation level.
  - Monitoring the state of operation and temperatures.
  - Alarm notification.
  - Parameter setting.
  - Control relay to switch on a pump at a fixed speed.
  - Analogue 0÷10V output to control a modulating pump.

- Emergency operation: this allows you to avoid the system from stopping due to an interruption in communication with the adjusting system or possible remote management of the control unit:
- Emergency temperature with maximum power 100%.
- Alarm management.
- Alarm reset input.
- Alarm notification Relay.
- Condensation collection tray with stainless steel exhaust trap.
- Easily removable integral paneling comprised of oven-painted steel panels suitable for outdoor installation.
- Condensation collection tray with stainless steel exhaust trap and flue chamber.
- Incorporated deaerator.

The request for heat can be generated by the HSCP thermoregulation/manager or alternatively by the BCM (Boiler controller).


The management logic envisions simultaneous operation of the maximum number of heat elements, so as to always obtain the maximum efficiency. Since it guarantees the maximum exchange area based on the delivered power. The elements are made to operate so as to equally divide the operating time.

The hot water that is produced is pushed by the pump located on the return of the primary ring to the flow of the hydraulic separator. From here a second pump (system - see suggested diagrams) will distribute to the various utilities. From the system, return the cooled water is taken in by the pump on the return, through the hydraulic separator, to start the cycle towards the generator again.



## TECHNICAL CHARACTERISTICS AND DIMENSIONS

### 2.2 VIEW OF MAIN PARTS



| KEY |            |                |                                            |
|-----|------------|----------------|--------------------------------------------|
| N°  | Error code | Wiring diagram | Description                                |
| 1   |            | HSCP           | Control Panel                              |
| 2   |            | VG             | Gas Valve                                  |
| 3   |            |                | Burner Cover                               |
| 4   |            | E. ACC.        | Ignition                                   |
| 5   |            | E. RIL.        | Ionisation                                 |
| 7   |            | TL             | Limit Thermostat                           |
| 8   |            |                | Burner                                     |
| 9   |            |                | Silicon Aluminium Exchanger                |
| 10  |            | SL             | Level Sensor                               |
| 11  |            |                | Condensation Collection Pan / Flue Fitting |
| 12  |            |                | Frame                                      |

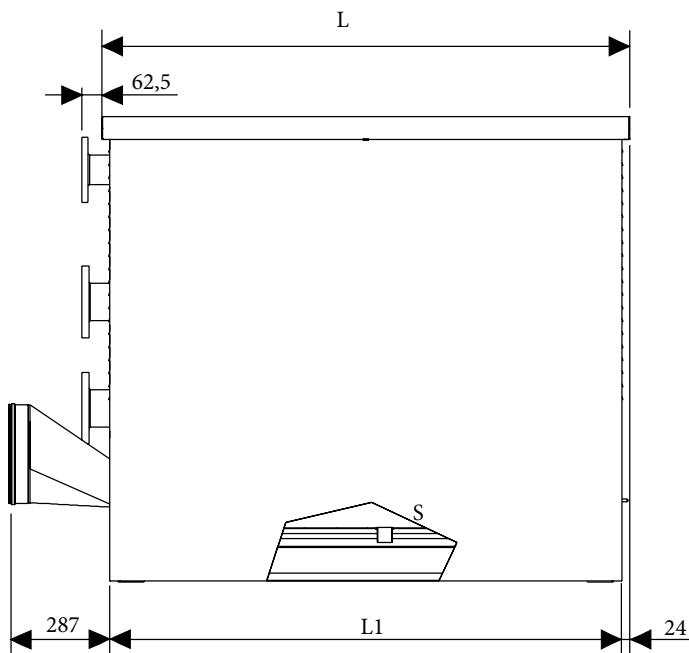
|    |  |        |                              |
|----|--|--------|------------------------------|
| 13 |  |        | Condensate Drain Outlet      |
| 14 |  |        | Draining Valve               |
| 15 |  | SRR    | Return Global Ntc            |
| 16 |  | SMG    | Probe Flow Global Ntc        |
| 17 |  |        | Automatic Air Bleed Valve    |
| 18 |  |        | Fan                          |
| 19 |  | PF min | Minimum Flue Pressure Switch |
| 20 |  | PF     | Flue Pressure Switch         |
| 21 |  |        | Fan Filter                   |



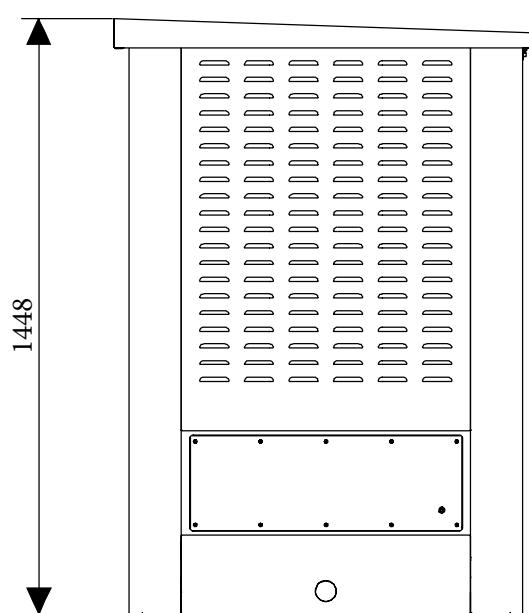
flue outlet LEFT, RIGHT, REAR side

flow LEFT side

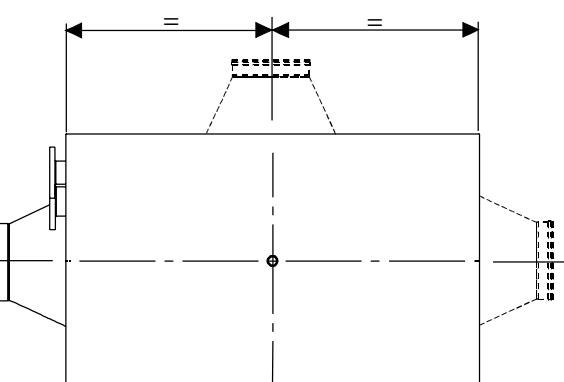
return LEFT side


Gas inlet LEFT side

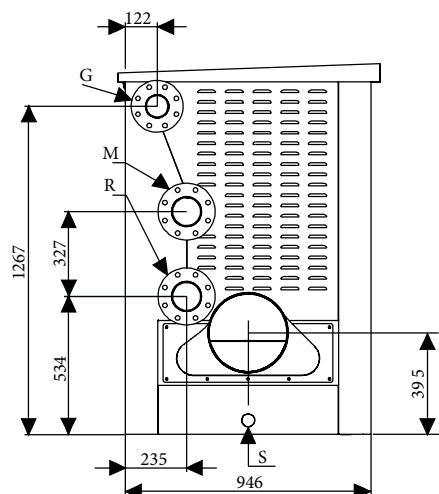
BCM: under the front casing


## TECHNICAL CHARACTERISTICS AND DIMENSIONS

### 2.3 DIMENSIONS


FRONT VIEW




RIGHT SIDE VIEW



TOP VIEW



LEFT SIDE VIEW



**Flue outlets:**

Left side (supply condition)

Right side

Rear side

| Dimensions              | Unit      | 440     | 550     | 660     | 770     | 900     |
|-------------------------|-----------|---------|---------|---------|---------|---------|
| Heating elements        | n°        | 4       | 5       | 6       | 7       | 8       |
| Height                  | mm        | 1448    | 1448    | 1448    | 1448    | 1448    |
| Width "L"               | mm        | 1087    | 1355    | 1355    | 1623    | 1623    |
| Width "L1"              | mm        | 1039    | 1307    | 1307    | 1575    | 1575    |
| Depth                   | mm        | 946     | 946     | 946     | 946     | 946     |
| <b>Attachment sizes</b> |           |         |         |         |         |         |
| G Gas fitting           | mm (inch) | 80 (3)  | 80 (3)  | 80 (3)  | 80 (3)  | 80 (3)  |
| F System flow           | mm (inch) | 100 (4) | 100 (4) | 100 (4) | 100 (4) | 100 (4) |
| R System return         | mm (inch) | 100 (4) | 100 (4) | 100 (4) | 100 (4) | 100 (4) |
| Flue fitting            | mm        | 250     | 250     | 300     | 300     | 300     |
| Condensate drain        | mm        | 40      | 40      | 40      | 40      | 40      |



## TECHNICAL CHARACTERISTICS AND DIMENSIONS

### 2.4 OPERATING DATA / GENERAL CHARACTERISTICS

For the adjustment data: NOZZLES - PRESSURES - DIAPHRAGMS - FLOW RATES refer to the paragraph ADAPTATION FOR USE WITH OTHER GASES.



Our appliances are built to work with natural gas (G20), LPG and mixtures of methane and hydrogen up to 20% in volume (20% H<sub>2</sub>NG). Power supply pipes must be the same as or larger than the appliance fitting.

| ARES Tec ErP                                                     |                   | 440                | 550                | 660                | 770                | 900                |
|------------------------------------------------------------------|-------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Boiler category                                                  |                   | II <sub>2H3P</sub> |
| Modulation ratio                                                 |                   | 1 : 19.6           | 1 : 24.5           | 1 : 29.4           | 1 : 34.3           | 1 : 39.2           |
| Nominal heat input on L.C.V. Qn                                  | kW                | 432                | 540                | 648                | 756                | 864                |
| Minimum heat input on L.C.V. Qmin                                | kW                |                    |                    | 22                 |                    |                    |
| Nominal heat input on L.V.C. Qn with gas 20% H <sub>2</sub> NG   | kW                | 392.8              | 491                | 589.2              | 687.4              | 785.6              |
| Minimum heat input on L.V.C. Qmin with gas 20% H <sub>2</sub> NG | kW                |                    |                    | 20.4               |                    |                    |
| Nominal effective power (Tr 60 / Tf 80 °C) Pn                    | kW                | 424.3              | 530.4              | 636.5              | 742.6              | 849.0              |
| Minimum effective power (Tr 60 / Tf 80 °C) Pn min                | kW                |                    |                    | 20.6               |                    |                    |
| Nominal effective power (Tr 30 / Tf 50 °C) Pcond                 | kW                | 445.0              | 557.8              | 670.1              | 783.2              | 900.3              |
| Minimum effective power (Tr 30 / Tf 50 °C) Pcond min             | kW                |                    |                    | 23.9               |                    |                    |
| Efficiency at nominal power (Tr 60 / Tf 80°C)                    | %                 |                    |                    | 98.2               |                    |                    |
| Efficiency at minimum power (Tr 60 / Tf 80°C)                    | %                 |                    |                    | 93.5               |                    |                    |
| Efficiency at nominal power (Tr 30 / Tm 50°C)                    | %                 |                    |                    | 104.0              |                    |                    |
| Efficiency at minimum power (Tr 30 / Tm 50°C)                    | %                 |                    |                    | 109.0              |                    |                    |
| Efficiency at 30% of the load (Tr 30°C)                          | %                 | 107.3              | 107.5              | 108.3              | 107.8              | 107.6              |
| Combustion efficiency at nominal load                            | %                 |                    |                    | 97.8               |                    |                    |
| Combustion efficiency at a reduced load                          | %                 |                    |                    | 98.5               |                    |                    |
| Losses from operating burner casing (Qmin)                       | %                 |                    |                    | 5.04               |                    |                    |
| Losses from operating burner casing (Qn)                         | %                 |                    |                    | 0.1                |                    |                    |
| Flue temperature at net of Tf-Ta (min)(*)                        | °C                |                    |                    | 31.0               |                    |                    |
| Flue temperature at net of Tf-Ta (max)(*)                        | °C                | 46.7               | 46.7               | 46.7               | 46.7               | 45.8               |
| Maximum permitted temperature                                    | °C                |                    |                    | 100                |                    |                    |
| Maximum operating temperature:                                   | °C                |                    |                    | 90                 |                    |                    |
| Mass flue flow rate (min)                                        | kg/h              |                    |                    | 37                 |                    |                    |
| Mass flue flow rate (max)                                        | kg/h              | 740                | 925                | 1111               | 1296               | 1515               |
| Air excess                                                       | %                 |                    |                    | 28.2               |                    |                    |
| Chimney losses with burner in operation (min)                    | %                 |                    |                    | 1.5                |                    |                    |
| Flue losses with burner in operation (max)                       | %                 | 2.58               | 2.53               | 2.51               | 2.58               | 2.58               |
| Minimum pressure of heating circuit                              | bar               |                    |                    | 0.5                |                    |                    |
| Maximum pressure of heating circuit                              | bar               |                    |                    | 6.0                |                    |                    |
| Water content                                                    | l                 | 67                 | 80                 | 94                 | 108                | 122                |
| Methane gas consumption G20 (supp.press, 20 mbar) at Qn          | m <sup>3</sup> /h | 45.68              | 57.10              | 68.52              | 79.94              | 91.36              |
| Methane gas consumption G20 (supp.press, 20 mbar) at Qn          | m <sup>3</sup> /h |                    |                    | 2.33               |                    |                    |
| Gas consumption G25 (supp.press, 20/25 mbar) at Qn               | m <sup>3</sup> /h | 53.13              | 66.41              | 79.69              | 92.97              | 106.25             |
| Gas consumption G25 (supp.press, 20/25 mbar) at Qn               | m <sup>3</sup> /h |                    |                    | 2.71               |                    |                    |
| Propane gas consumption (supp.press, 37/50 mbar) at Qn           | kg/h              | 33.53              | 41.92              | 50.30              | 58.68              | 67.01              |
| Propane gas consumption (supp.press, 37/50 mbar) at Qn           | kg/h              |                    |                    | 1.71               |                    |                    |
| Maximum pressure available at flue base                          | Pa                |                    |                    | 100                |                    |                    |
| Max condensate production                                        | kg/h              | 73.4               | 91.7               | 110                | 128.4              | 146.7              |
| <b>Emissions</b>                                                 |                   |                    |                    |                    |                    |                    |
| CO at maximum heat input with 0% O <sub>2</sub>                  | mg/kWh            | 58                 | 58                 | 56                 | 61                 | 58                 |
| NOx at maximum heat input with 0% O <sub>2</sub>                 | mg/kWh            | 40                 | 40                 | 38                 | 36                 | 37                 |
| NOx class                                                        |                   |                    |                    | 6                  |                    |                    |
| (***) Sound pressure level                                       | dBA               | 54                 | 54                 | 54                 | 54                 | 56                 |
| <b>Electrical data</b>                                           |                   |                    |                    |                    |                    |                    |
| Frequency/Power supply voltage:                                  | V/Hz              |                    |                    | 230/50             |                    |                    |
| Absorbed power in normal operation                               | kW                | 0.626              | 0.783              | 0.940              | 1.096              | 1.252              |
| (****) Absorbed power after Limit Thermostat trip                | kW - A            | 0.968-4.4          | 1.210-5.5          | 1.452-6.6          | 1.692-7.7          | 1.936-8.8          |
| Supply fuse                                                      | A (R)             |                    |                    | 6.3/10             |                    |                    |
| (**) Degree of protection                                        | IP                |                    |                    | X5D                |                    |                    |



Room Temperature = 20°C

(\*) Temperatures read with the device operating with flow 80°C / ret. 60°C

CO<sub>2</sub>(min/max) See "NOZZLES - PRESSURES" table

Seasonal Energy Efficiency according to 2009/125 EEC (<=400Kw) ηs - see Table ErP

Losses at shutdown at ΔT 30°C - Pstb - see Table ErP

Electrical consumption in standby - Pstb - see Table ErP

(\*\*) The IP X5D degree of protection is obtained with the lid lowered

(\*\*\*) at a distance of 1 m in a free field.



(\*\*\*\*) ATTENTION!

Dedicate a residual current device protection C16 only to the boiler without further loads  
(see Par. 3.12 Electrical supply connection).



### 2.4.1 TECHNICAL DATA

| ARES TEC ErP                                                                       |                |                                                                                     | 440    | 550    | 660    | 770    | 900    |
|------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------|--------|--------|--------|--------|--------|
| Element                                                                            | Symbol         | Unit                                                                                |        |        |        |        |        |
| Useful heat output                                                                 | Nominal output | kW                                                                                  | 424    | 530    | 636    | 743    | 849    |
| Room central heating seasonal energy efficiency                                    | $\eta_s$       | %                                                                                   | 92     | 92     | 92     | 92     | 92     |
| <b>For boilers for central heating and combination boilers: useful heat output</b> |                |                                                                                     |        |        |        |        |        |
| Useful heat output in high temperature mode (Tr 60 °C / Tm 80 °C)                  | $P_4$          | kW                                                                                  | 424.3  | 530.4  | 636.5  | 742.6  | 848.7  |
| Efficiency at nominal heat output in high temperature mode (Tr 60 °C / Tm 80 °C)   | $\eta_4$       | %                                                                                   | 88.5   | 88.5   | 88.5   | 88.5   | 88.5   |
| Useful heat output at 30% nominal heat output in low temperature mode (Tr 30 °C)   | $P_1$          | kW                                                                                  | 139.1  | 174.2  | 210.5  | 244.5  | 278.9  |
| Efficiency at 30% nominal heat output in low temperature mode (Tr 30 °C)           | $\eta_1$       | %                                                                                   | 96.7   | 96.9   | 97.6   | 97.1   | 96.9   |
| Boiler with power range adjustment: YES / NO                                       |                |                                                                                     | NO     | NO     | NO     | NO     | NO     |
| <b>Auxiliary electricity consumption</b>                                           |                |                                                                                     |        |        |        |        |        |
| At full load                                                                       | elmax          | kW                                                                                  | 0.626  | 0.783  | 0.940  | 1.096  | 1.252  |
| At partial load                                                                    | elmin          | kW                                                                                  |        |        | 0.054  |        |        |
| In standby mode                                                                    | PSB            | kW                                                                                  |        |        | 0.020  |        |        |
| <b>Other items</b>                                                                 |                |                                                                                     |        |        |        |        |        |
| Heat loss in standby                                                               | $P_{std}$      | kW                                                                                  | 0.2114 | 0.2114 | 0.2114 | 0.2114 | 0.2114 |
| Emissions of nitrogen oxides ref. PCS                                              | NOx            | Mg/kWh                                                                              |        |        | 27     |        |        |
| Annual electrical consumption                                                      | QHE            | GJ                                                                                  | 1303   | 1633   | 1959   | 2286   | 2612   |
| <b>For mixed central heating appliances</b>                                        |                |                                                                                     |        |        |        |        |        |
| Stated load profile                                                                |                |                                                                                     | -      | -      | -      | -      | -      |
| Water central heating energy efficiency                                            | $\eta_{wh}$    | %                                                                                   | -      | -      | -      | -      | -      |
| Daily electrical power consumption                                                 | Qelec          | kWh                                                                                 | -      | -      | -      | -      | -      |
| Daily fuel consumption                                                             | Qfuel          | kWh                                                                                 | -      | -      | -      | -      | -      |
| Sound power level indoors                                                          | Lwa            | dB (A)                                                                              | -      | -      | -      | -      | -      |
| Annual electrical consumption                                                      | AEC            | kWh                                                                                 | -      | -      | -      | -      | -      |
| Annual fuel consumption                                                            | AFC            | GJ                                                                                  | -      | -      | -      | -      | -      |
| DHW seasonal efficiency class                                                      |                |  | -      | -      | -      | -      | -      |



## TECHNICAL CHARACTERISTICS AND DIMENSIONS

### 2.4.2 DETERMINING THE PRIMARY CIRCUIT PUMP OR BOILER PUMP

The boiler pump must have head that can ensure circulator flow rates according to the circuit's  $\Delta t$ .

The pump is not an integral part of the boiler. It is advisable to choose a pump with a flow rate and head of approximately 2/3 of its typical curve.



**The pumps must be determined by the installer or designer based on the data for the boiler and system.**

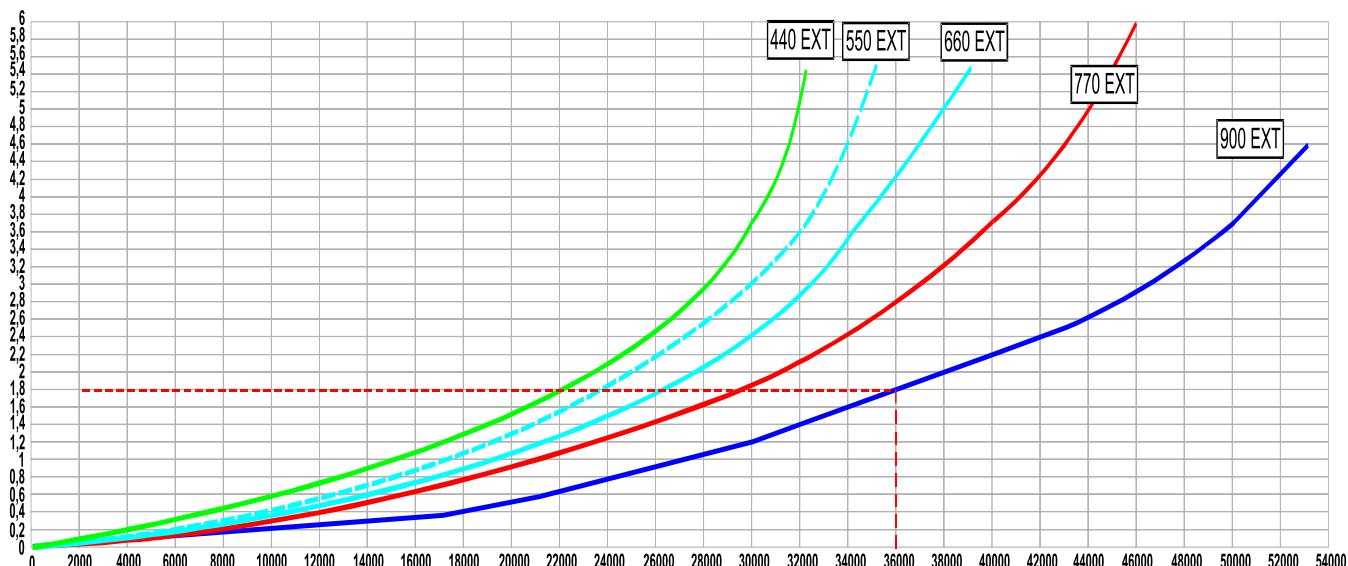
#### ARES TEC 440 ErP

|                                                         |        |
|---------------------------------------------------------|--------|
| Maximum flow rate in l/h ( $\Delta t = 15$ K)           | 24.326 |
| Nominal requested flow rate in l/h ( $\Delta t = 20$ K) | 18.243 |

#### ARES TEC 770 ErP

|                                                         |        |
|---------------------------------------------------------|--------|
| Maximum flow rate in l/h ( $\Delta t = 15$ K)           | 42.570 |
| Nominal requested flow rate in l/h ( $\Delta t = 20$ K) | 31.926 |

#### ARES TEC 550 ErP


|                                                         |        |
|---------------------------------------------------------|--------|
| Maximum flow rate in l/h ( $\Delta t = 15$ K)           | 30.404 |
| Nominal requested flow rate in l/h ( $\Delta t = 20$ K) | 22.804 |

#### ARES TEC 900 ErP

|                                                         |        |
|---------------------------------------------------------|--------|
| Maximum flow rate in l/h ( $\Delta t = 15$ K)           | 48.647 |
| Nominal requested flow rate in l/h ( $\Delta t = 20$ K) | 36.487 |

#### ARES TEC 660 ErP

|                                                         |        |
|---------------------------------------------------------|--------|
| Maximum flow rate in l/h ( $\Delta t = 15$ K)           | 36.487 |
| Nominal requested flow rate in l/h ( $\Delta t = 20$ K) | 27.365 |



#### EXAMPLE:

For a  $\Delta t$  20K, of an ARES Tec ErP 900 the maximum required flow rate is 10514 l/h.  
From the head loss graph it is possible to deduce that the pump must ensure a head of at least 1.6 m/ $H_2O$ .



#### NOTE:

It is always advisable to set up a hydraulic compensator between the boiler circuit and the system circuit. It becomes ESSENTIAL if the system requires greater flow rates than the maximum allowed by the boiler, i.e.  $\Delta t$  below 15K.



# 3 INSTRUCTIONS FOR INSTALLATION

## 3.1 GENERAL RECOMMENDATIONS



### ATTENTION!

This boiler must only be employed for its explicitly intended use. Any other use must be considered improper and therefore dangerous.

This boiler is used to heat water to below boiling temperature in atmospheric pressure.



### ATTENTION!

The appliances are designed to be installed inside buildings only in suitable technical compartments, and also outdoors in a completely open place.



Before connecting the boiler, have professionally authorised company:

- Accurately washing all of the pipes in the system to remove any residues or sediments could stop the boiler from running efficiently, even in terms of health and hygiene.
- Making sure the boiler is set up to operate with the available type of fuel. The type of fuel is stated on the packaging and technical characteristics plate.
- Make sure that the chimney/flue has an adequate draught, that it is not choked, and that there are no other exhausts for other appliances, unless the flue is designed for multiple utilities, in accordance with standard specifications and requirements in force. Only once this check has been carried out can the fitting between boiler and chimney/flue be set up.



### ATTENTION!

In rooms with aggressive vapour or dust, the appliance must operate independently of the air in the room of installation!



### ATTENTION!

The appliance must be installed by an authorised company possessing professional-technical qualifications in accordance with the law, who, under his/her own responsibility, enforces the observance of regulations according to the rules of good practice.



### ATTENTION!

Assemble the appliance in observance of the minimum required distances for installation and maintenance.



The boiler must be connected to a heating system compatibly with its specifications and power.

## 3.2 REGULATIONS FOR INSTALLATION

Installation must be carried out by a professionally authorised company, who is in charge of enforcing observance of all local and/or national laws published in the Official Gazette, as well as all applicable technical regulations.

## 3.3 PREVENTATIVE CHECKS AND ADAPTATION OF THE SYSTEM

when the appliance is installed on existing systems, make sure that:

- The flue is suitable for condensation appliances, for the temperatures of the combustion products, calculated and built in accordance with regulations in force. That is it a straight as possible, water-tight and insulated and does not have any obstructions or constrictions.
- The flue is equipped with an attachment to evacuate the condensation. The boiler room is equipped with a pipe for the evacuation of the condensation produced by the boiler.
- The electrical system is built in accordance with specific regulations and by professionally authorised company.
- The flow rate, head and direction of flow of the circulation pumps is appropriate.
- The fuel feed line and any existing tanks are set up in accordance with regulations in force.
- The expansion vessels ensure complete absorption of the dilation of the fluid contained in the system.
- Slurry and build-up have been cleaned out of the system.



## INSTRUCTIONS FOR THE INSTALLER

### 3.4 PACKAGING

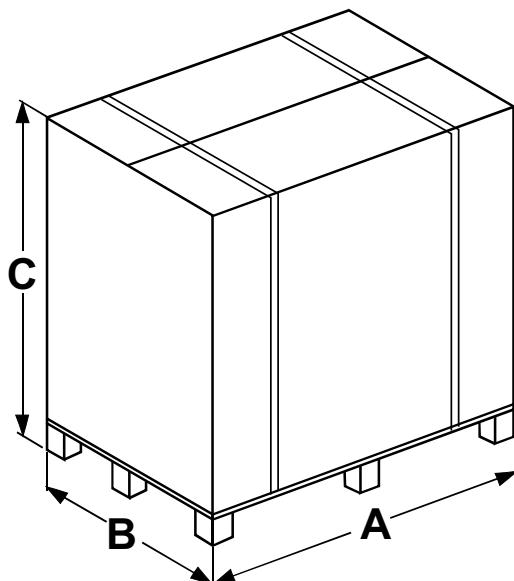
The ARES Tec ErP boiler is supplied assembled in a sturdy cardboard box.



Once the two straps have been removed, slide the box off from the top and make sure the contents are intact.



Packaging materials (cardboard box, straps, plastic bags, etc.) **constitute a potential hazard and must be kept out of the reach of children.**


The manufacturer will not be held liable in case of damage caused to people, animals or property due to failure to observe the above.



#### OBLIGATION!

##### Wear protective gloves

- Only transport the boiler using appropriate transport means, for example a trolley with fixing strap.
- When the boiler is shipped, it must be secured to the transport equipment.
- Protect all parts against impacts, if they must be transported.
- Follow the transport instructions on the package.
- The boilers must always be lifted and carried with a trolley or suitable transport equipment.



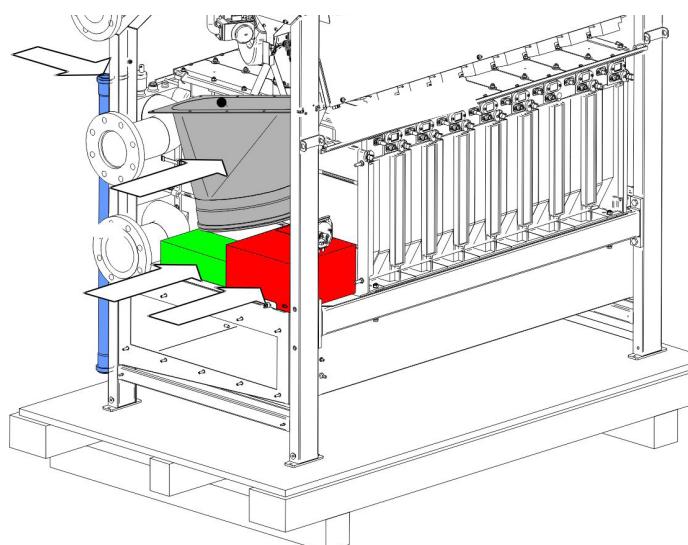
| Model | A (mm) | B (mm) | C (mm) | Gross Weight (kg) |
|-------|--------|--------|--------|-------------------|
| 440   | 1263   | 1120   | 1515   | 585               |
| 550   | 1531   | 1120   | 1515   | 643               |
| 660   | 1531   | 1120   | 1515   | 707               |
| 770   | 1799   | 1120   | 1515   | 806               |
| 900   | 1799   | 1120   | 1515   | 858               |

To take the boiler off of the pallet it is necessary to use a jib crane, to avoid damaging it.

- Remove the casings and harness it using slings "A" fig. 3 being careful to pass the slings through the load bearing crossbeams of the frame
- Tie the slings to the jib "B". Perform these operations with caution.

Composition of packaging:

#### on the left side of the boiler:


- The flue exhaust manifold.
- A cardboard box containing:
  - Gasket between pan and terminal
  - Collar gasket ( $\varnothing$  250)  $\varnothing$  300
  - Two bends + one T + plastic cap for condensate drain
  - Screws required to secure the flue terminal
- The probes: external, flow, storage tank.
- Flue inspection cap.
- Plate and fairlead for power output.
- A cardboard box containing:
  - Flanges

#### Inside the rear side of the casing:

- Condensate drain trap pipes (1 m).

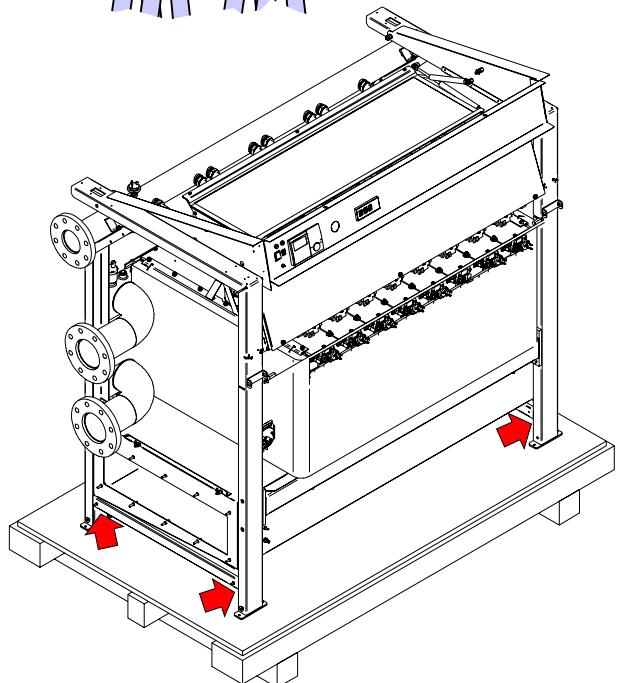
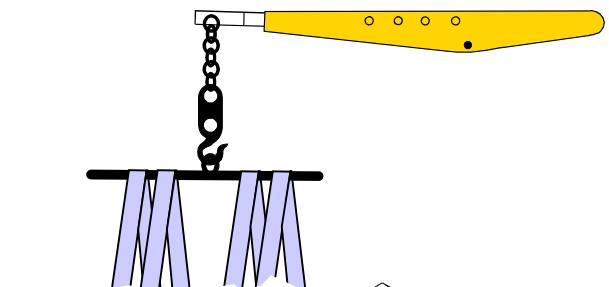
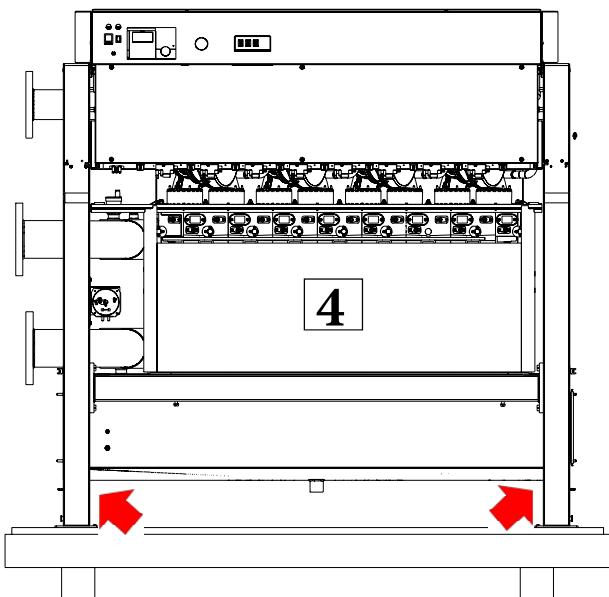
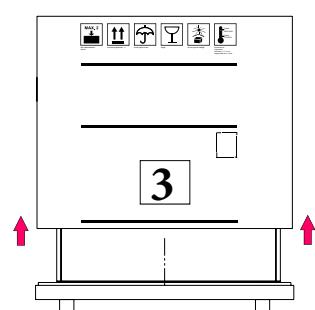
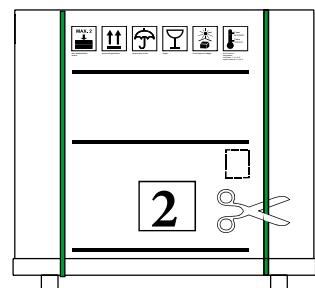
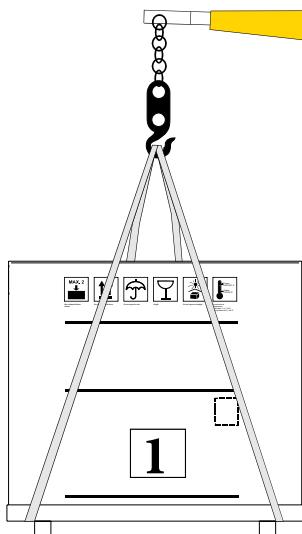
#### Above the boiler cover:

- A plastic bag containing:
  - Installer and maintenance technician instructions handbook
  - HSCP control unit user handbook
  - BCM 2.0 user handbook
  - SHC book
  - Warranty certificate
  - Hydraulic test certificate
  - Pins to block the set of fans in raised position



### 3.5 OPERATION TO UNLOAD AND REMOVE THE PACKAGING


**ATTENTION!**







Handle using forklift or hoist and sling.

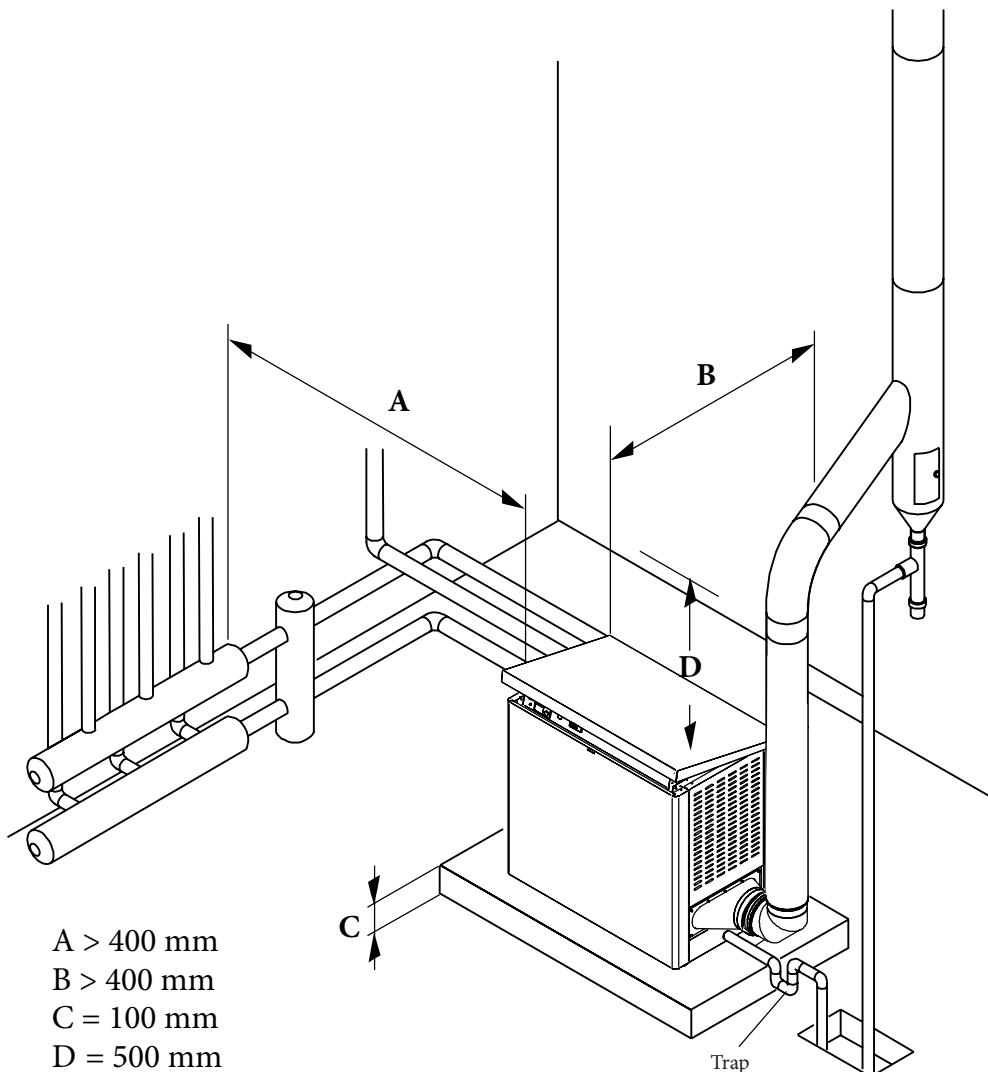

**ATTENTION!**

Sling slotting points for lifting. The slings must be assembled on the load bearing crossbeams.

To take the boiler off of the pallet it is necessary to use a jib crane, to avoid damaging it.

- Remove the casings and harness it using slings, being careful to pass the slings through the load bearing crossbeams of the frame.
- Tie the slings to the jib. Perform these operations with caution.




### 3.6 POSITIONING THE HEATING CONTROL UNIT

Special attention must be paid to local standards and regulations regarding heating control units, especially the minimum distances that must be observed.

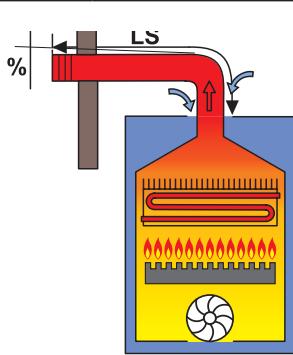
Installation must be comply with the requirements contained in the most recent standards and legislation regarding heating control units, heating system installation and hot water production, ventilation, flues suitable for condensation boiler combustion product exhaust, and any other applicable regulation.

The boiler can be placed on a flat platform that is sufficiently sturdy in size, in plan, no smaller than the boiler measurements and with a minimum height of at least 100 mm so that the trap for condensate drainage can be installed. Alternatively, a trap can be built from this platform, next to the boiler, at a depth of 100 mm so that the trap can be placed in it (Parag. 3.16).

When installation is complete the boiler should be perfectly horizontal and firmly stable (to reduce vibrations and noise).



 Observe the minimum clearance distances required to perform normal maintenance and cleaning operations.


### 3.7 FLUE EXHAUST PIPE CONNECTION

The flue exhaust pipe must comply with local and national regulations.

**B23P**

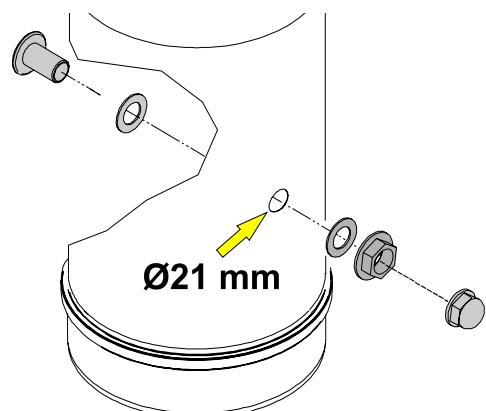
#### ATTENTION

For this type of connection, the room follows the same installation regulations for boilers with natural draught



Connection to a combustion product evacuation pipe outside the room, the combustion air is taken directly from the room where the device is installed.

#### 3.7.1 FLUE EXHAUST MANIFOLD CONNECTION




To secure the flue exhaust manifold use the nuts and washers contained in the bag.



**The flue point must be positioned on the first straight section, within 1 meter of the boiler.**

To set up the flue inspection point, cut a Ø 21 mm hole in the flue exhaust pipe, and install the inspection point following the sequence provided.

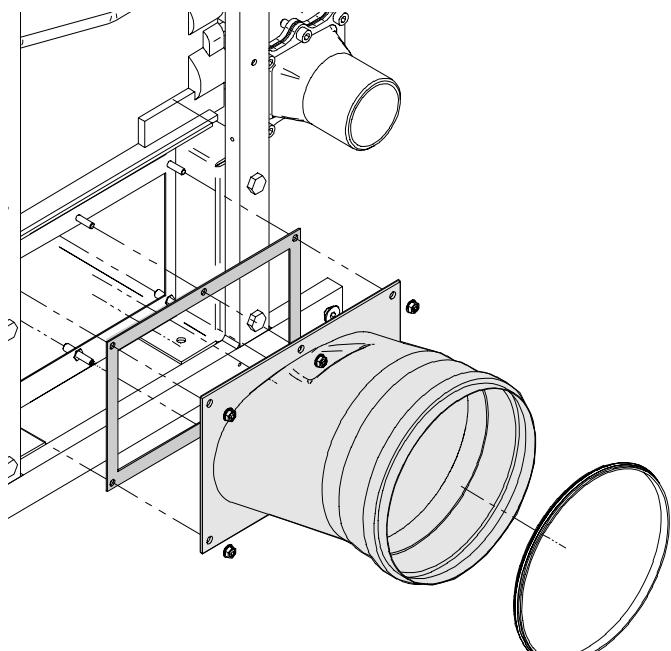


#### HEAD AVAILABLE AT THE BASE OF THE CHIMNEY

| S (Exhaust) A (Intake) | A (Intake) |
|------------------------|------------|
| Dp = 100 Pa -          | -          |

The maximum permitted length of the pipes is determined by the head (Dp) available at the base of the chimney.




#### ATTENTION:

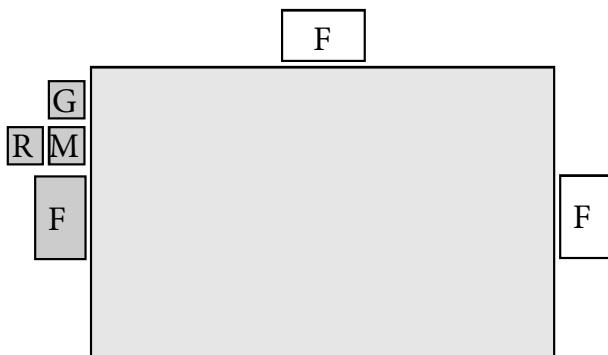
for the type of B23P connection, the room follows the same installation regulations for boilers with natural draught.



#### ATTENTION:

The flue must comply with the standards in force.

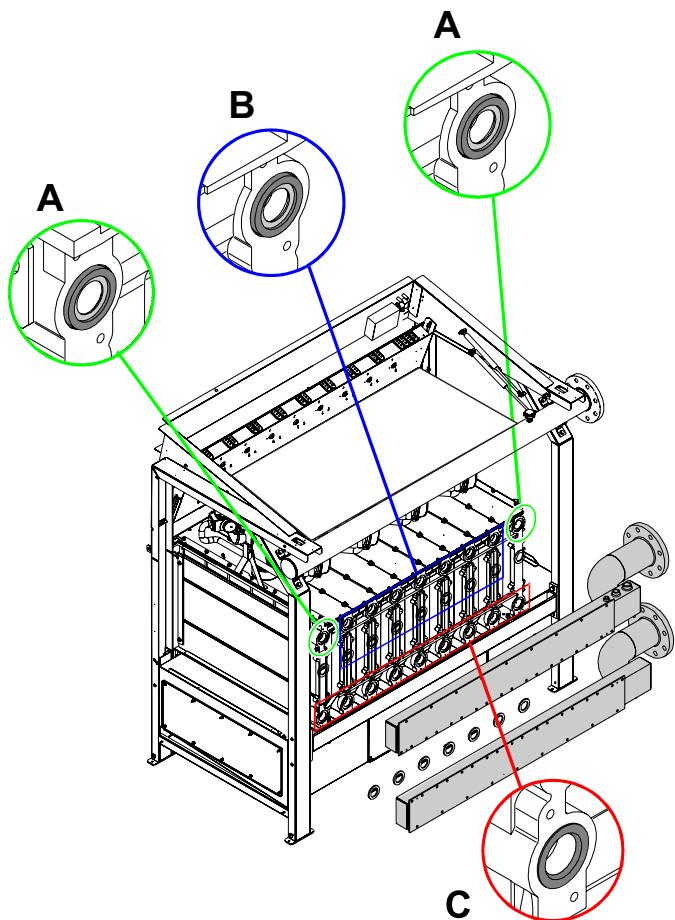



### 3.8 CONNECTING THE BOILER



The ARES Tec ErP boiler leaves the factory set up for the hydraulic (flow and return) and gas connections located on the left side of the boiler.

To fasten the flue exhaust manifold use the screws and gaskets contained in the accessory kit box and a 10 mm socket key.


The flue exhaust manifold is set up on the LEFT SIDE. It is also possible to set up the outlet on the RIGHT and REAR SIDE.



#### Diaphragms and gaskets.

**Diaphragm** installed on the first and last element of the flow manifold Ø 18 (A), internal Ø 27 (B).

**Gaskets** installed on all of the other elements (C).



### 3.9 GAS CONNECTION

The gas intake pipe must be connected to the boiler using the respective G 3" fitting as indicated in parag. 2.3.

The supply pipe must have a section equal to or larger than the one used in the boiler and must nevertheless provide the correct gas pressure.

It is nevertheless advisable to adhere to the standard specifications and requirements in force, setting up a cut-off valve, gas filter, anti-vibration joint, etc.

Before commissioning an internal gas distribution system and therefore, before connecting it to the meter, it is necessary to thoroughly check the seal.

If any part of the system is not in view, the sealing test must be carried out before covering the pipe.



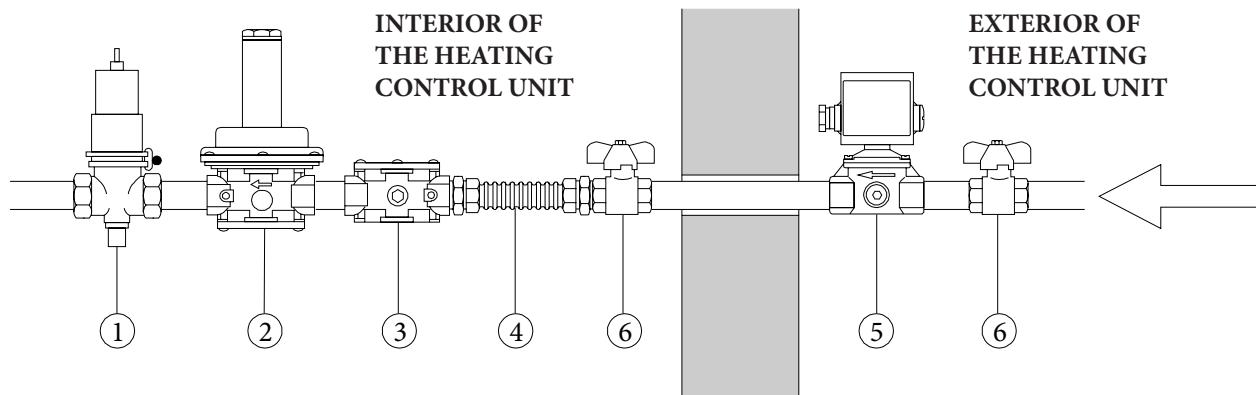
#### Danger!

The gas connection must be set up by an authorised installation technician who must observe and apply the contents of the legislation in force and the local requirements of the gas supply company, as incorrect installation can cause damage to people, animals and property, for which the manufacturer will not be held liable.



Before installation it is advisable to clean the inside of the fuel intake pipe thoroughly, in order to remove any residues that could stop the boiler from operating smoothly.




If you notice the smell of gas:

- Do not work the electrical switches, the telephone or any other object that can generate sparks;
- Immediately open doors and windows to create an air current that purifies the room;
- Close the gas valves;
- Seek the assistance of professionally qualified personnel.



In order to prevent any gas leaks it is advisable to install a surveillance and protection system composed of a gas leak detector combined with a cut-off electrovalve on the fuel supply line.

#### EXAMPLE OF GAS INTAKE SYSTEM



#### Key:

- 1 - Fuel shut-off valve
- 2 - Double membrane regulator
- 3 - Gas filter
- 4 - Anti-vibration joint
- 5 - Gas electrovalve
- 6 - Cut-off valve



### 3.10 CONNECTION

|   |     |      |
|---|-----|------|
| G | GAS | G 3" |
|---|-----|------|



**Danger!**

The gas connection must be set up by an authorised installation technician who must observe and apply the contents of the legislation in force and the local requirements of the gas supply company, as incorrect installation can cause damage to people, animals and property, for which the manufacturer will not be held liable.



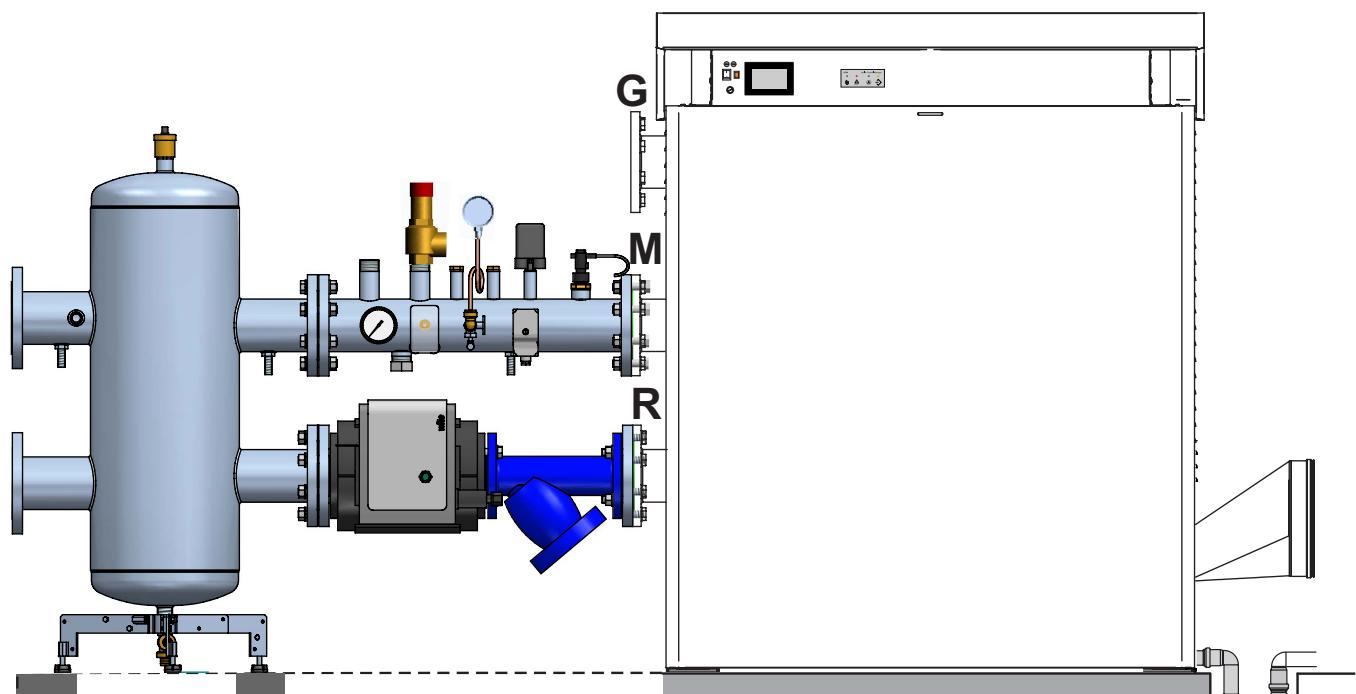
**If you notice the smell of gas:**

- Do not work the electrical switches, the telephone or any other object that can generate sparks;
- Immediately open doors and windows to create an air current that purifies the room;
- Close the gas valves;
- Seek the assistance of professionally qualified personnel.



In order to prevent any gas leaks it is advisable to install a surveillance and protection system composed of a gas leak detector combined with a cut-off electrovalve on the fuel supply line.

|   |        |      |
|---|--------|------|
| M | FLOW   | G 4" |
| R | RETURN | G 4" |




Make sure the pipes in the system are not used as earthing connections for the electrical or telephone system. They are absolutely not suitable for this purpose. Serious damage to pipes, boiler and radiators could occur in a short amount of time.



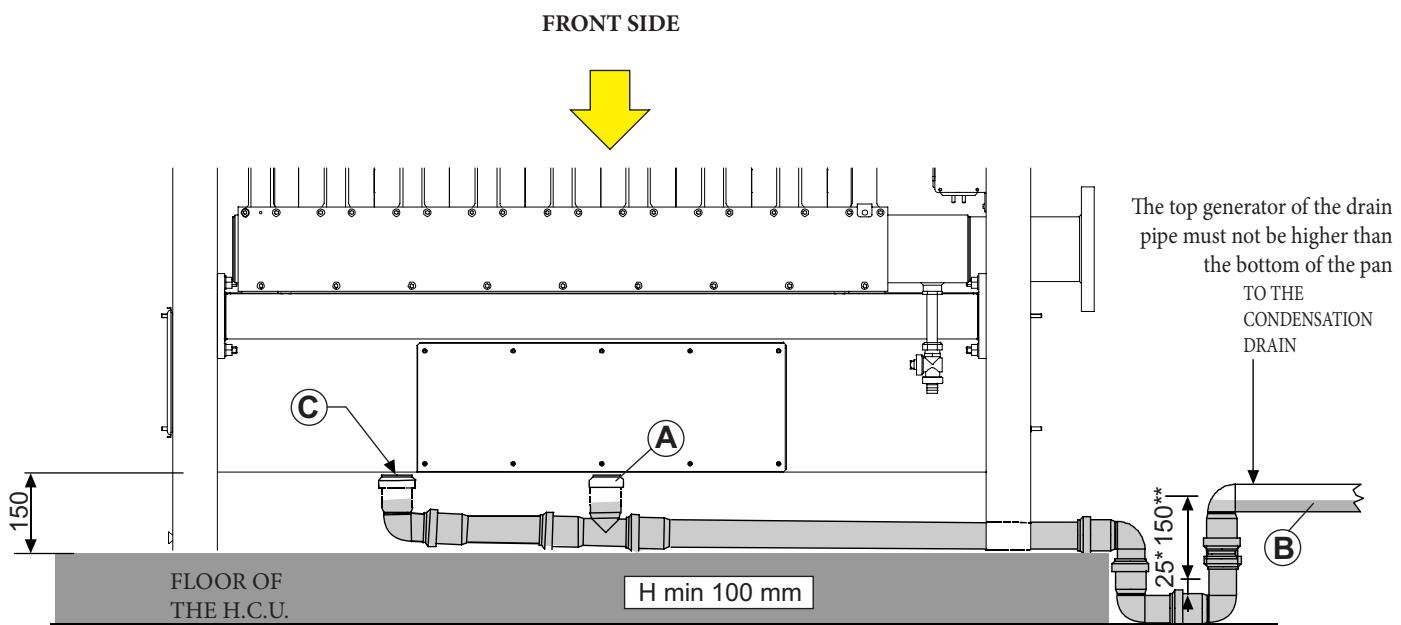
**ATTENTION!**

IT IS ABSOLUTELY FORBIDDEN TO SET UP CUT-OFF DEVICES ON THE GENERATOR BEFORE THE SAFETY DEVICES.



**Condensate drain**

During the combustion process, the boiler generates condensate that flows into the drain trap through pipe "A".


The condensate that forms inside the boiler must flow into a suitable drain from pipe "B".

**Danger!****Before commissioning the appliance:**

- check correct assembly of the drain trap
- fill the drain trap from the filler cap "C" and check the correct draining of condensate.

If the appliance is used with an empty condensate drain trap the danger of poisoning subsists following a flue gas leak.

The condensate drain pipe outlet is set up towards the connection side of the flue box manifold, removing the pre-sectioned part on the cover panel.



\* Minimum safety trap enforced by regulation

\*\* Minimum head with boiler operating at maximum power.

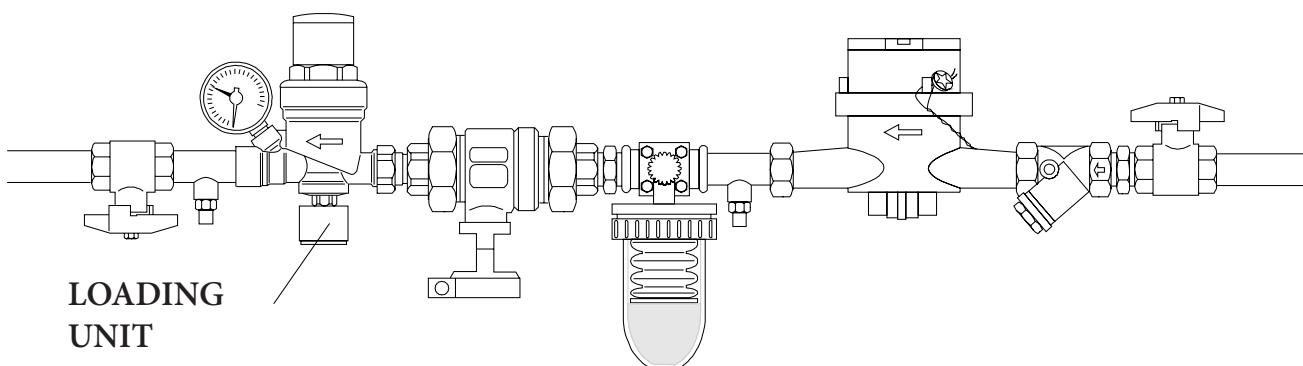


Connection between the appliance and the domestic wastewater disposal system must be carried out in compliance with the specific regulations of reference.



If you do not want to or are able to create a platform, it is possible to install the boiler on the floor and set up the trap at a depth of 100 mm.




### 3.11 SYSTEM FILLING AND EMPTYING

Once all of the connections for the system have been set up, it is possible to fill the circuit.

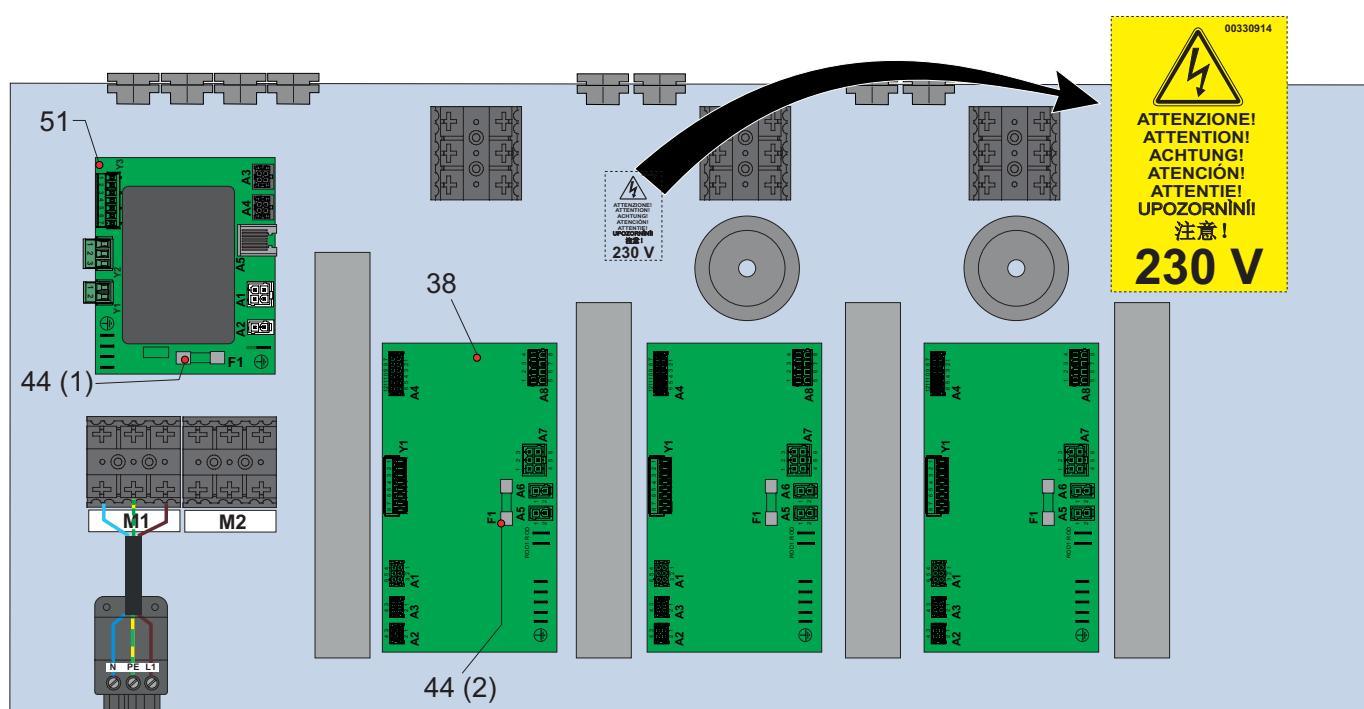
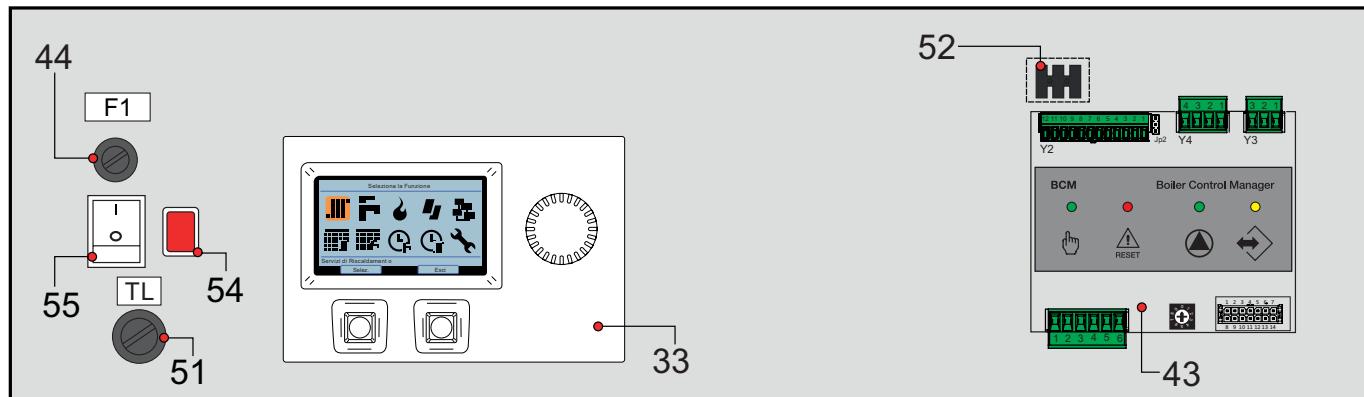


To fill the system it is possible to set up a loading valve on the system's return pipe.

EXAMPLE OF SYSTEM LOADING UNIT



A load cock must be provided on the central heating circuit in order to fill the system, or use the optional accessories.


The boiler is equipped with its own draining valve, **14**. This valve must **never** be used to empty the system, since all of the dirt contained in the system may accumulate in the boiler, jeopardising smooth operation. Therefore, before using the draining valve, make sure that the system's interception cock situated under the pump has been closed. **The system must be equipped with its own emptying valve, of a suitable size for the flow rate of the system.**

## 3.12 ELECTRICAL CONNECTIONS



**Danger!** Before setting up the connections or any operation on the electrical parts, always cut-off the electrical supply and make sure it cannot be accidentally re-connected.

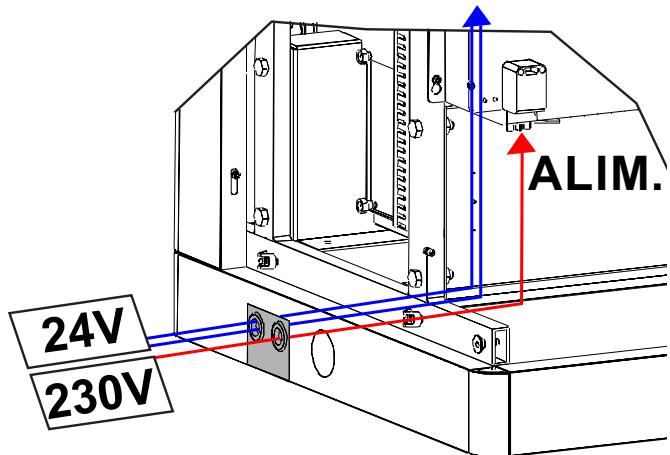


## KEY

| No.    |      | Description                               |
|--------|------|-------------------------------------------|
| 33     |      | Temperature control HSCP                  |
| 38     | BMM  | Burner management board                   |
| 43     | BCM  | Boiler controller                         |
| 44 (1) | F1   | Power supply fuse 6.3 AF 250 V            |
| 44 (2) | F1   | Board fuse BMM 6.3 AF 250 V               |
| E      |      | Power supply board                        |
| 51     | TLG  | Manual resetting general limit thermostat |
| 52     | M2   | Additional terminal board +24V BCM        |
| 54     | LTGL | TLG intervention light                    |
| 55     |      | Boiler main switch                        |
| D      |      | Wieland power plug 230V - 50Hz            |



## INSTRUCTIONS FOR THE INSTALLER




**Danger!**  
Electrical installation must only be carried out by an authorised company.



**Electrical connection to the mains power supply.**  
This connection must be set up by state of the art, as envisioned by regulations in force.

### Electrical supply connection



Connect with the plug "D" supplied with the boiler.

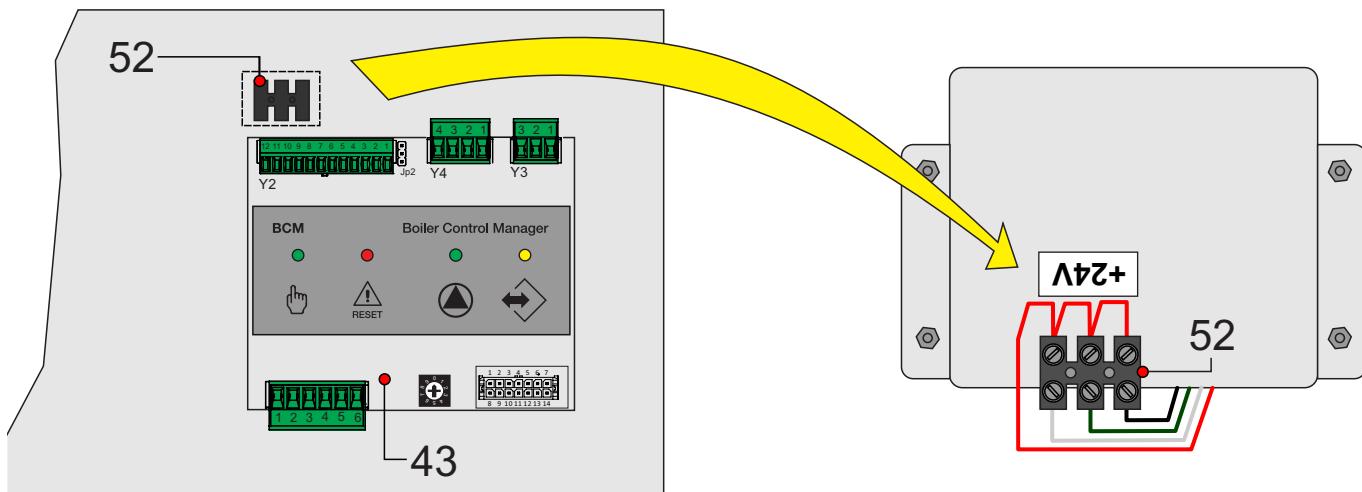
N.B. The 24 V output is for any signal / services connections.



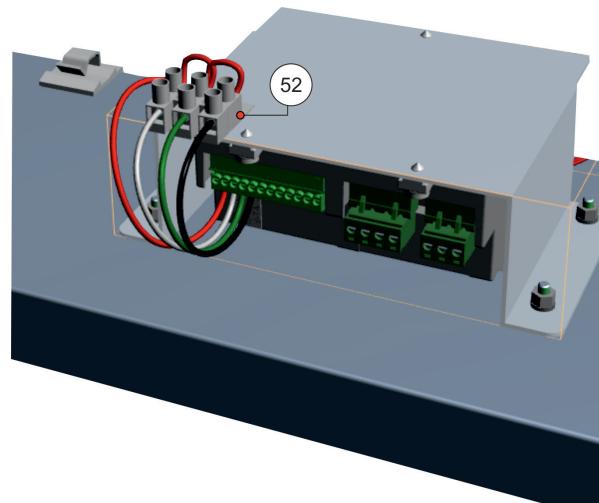
Remember that it is necessary to install a bipolar switch on the electrical supply to the boiler with a max distance between the contacts of 3 mm, easy to access, so that maintenance operations can be carried out quickly and safely.



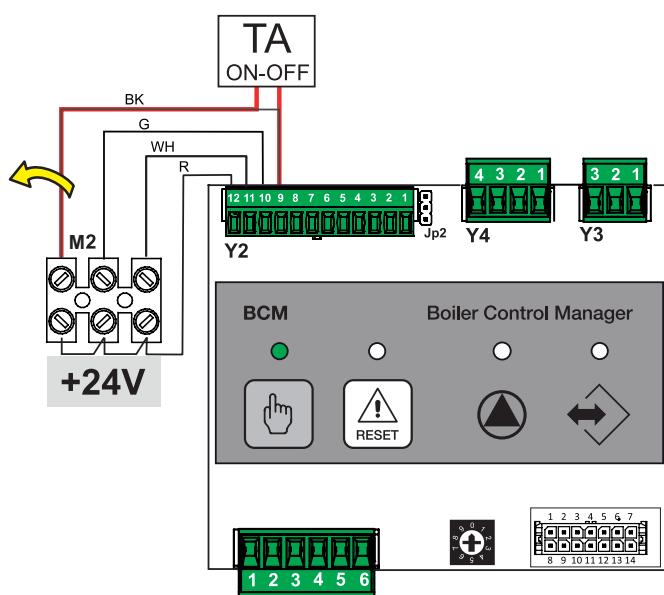
The electrical supply to the boiler, 230 V - 50 Hz single-phase, must be carried out with a H05VV-F (PHASE - NEUTRAL - GROUND) three-pole cable with a section between 0.75 mm and 1.5 mm.




**ATTENTION!**  
Respect the PHASE and NEUTRAL polarity since flame detection is Phase Sensitive.



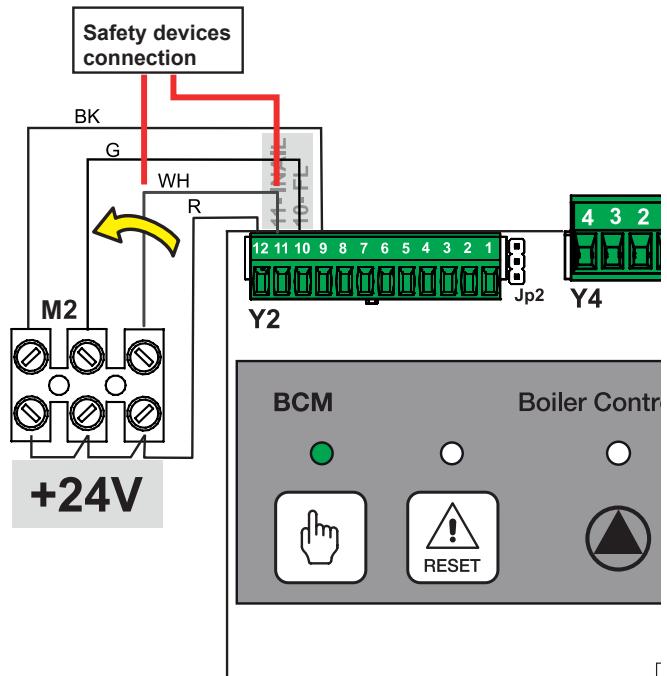

**ATTENTION:**  
Cables carrying a voltage of 230 V must travel separately from cables carrying a voltage of 24 V.


### Connections to the additional BCM terminal board



52 M2 Additional terminal board +24V BCM




Connection TA (\*)

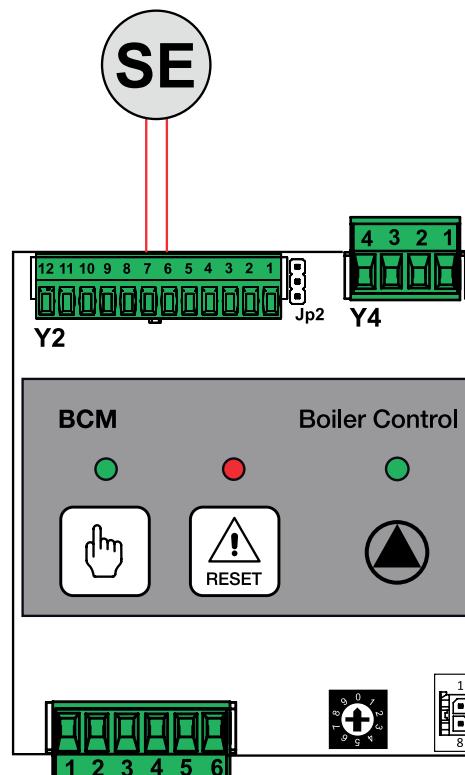


(Y2 - 9 and terminal board M2) after removing the jumper.

(\*) Optional

INAIL safety connection




Remove the jumper and connect the cables, as indicated between (Y2 11 and terminal board M2).

FL Flow switch connection (\*)



Remove the jumper and connect the cables, as indicated between (Y2 10 and terminal board M2).

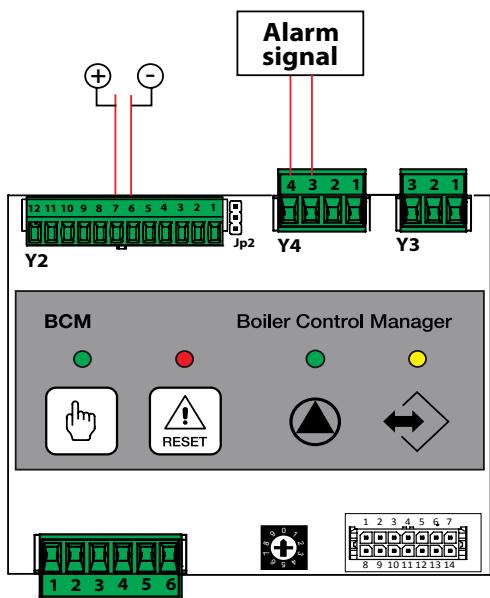
External probe connection



Set up on the terminal board, BCM (Y2 6-7)



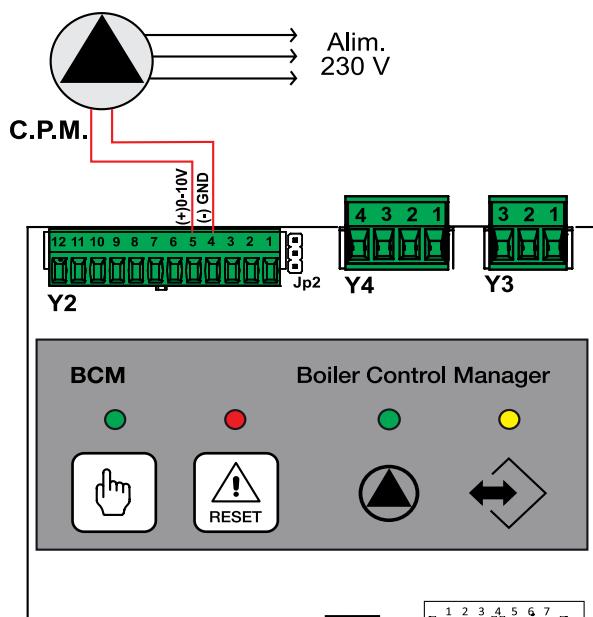
## INSTRUCTIONS FOR THE INSTALLER




### NOTE:

The boiler is provided with set-up to manage one direct flow and one storage tank.

If **Stemp. ACC** is connected automatically, the DHW service is enabled, which will be managed as a priority compared to direct flow through the pumps shown below.


Alarm / signals contact (N.O. dry contact)  
Ext signal contact 0 - 10 V

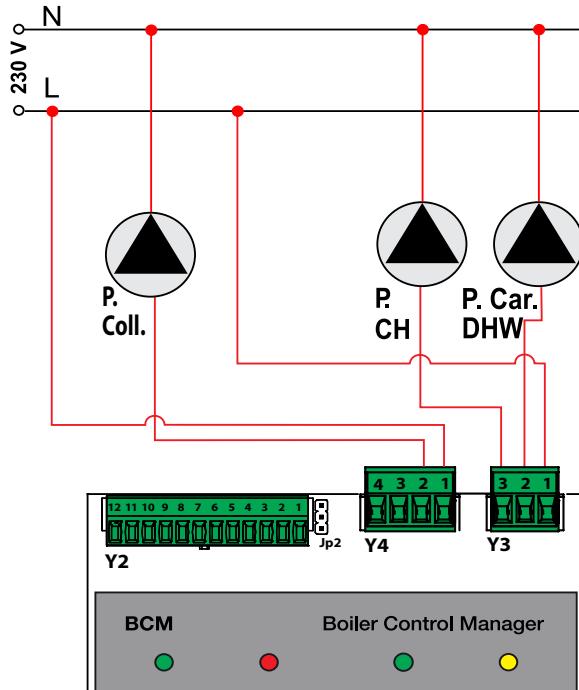


Connect the cables as indicated (Y4 3-4)  
Connect the cables (Y4 7-8)

Connection Mod. P. Central Heating Modulating Pump (Optional)

## P. Mod.



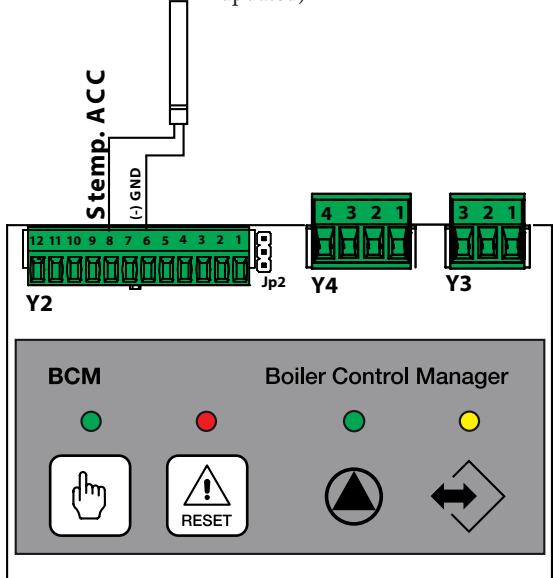

Connect the modulation control cables as indicated (Y2 4-5).  
External power supply 230 V-50 Hz.

If other services (storage tanks, mixed zones, solar, etc.) are requested, it is necessary to purchase SHC multifunction modules to connect to the local bus for total temperature control management via HSCP (and UFLY).



The BCM relay contacts support pumps with max absorption of 4 A.

P. Coll - Pump Manifold (Primary ring) (Optional)  
P CH - Heating circuit pump (central heating circuit)  
P. Car DHW - Storage tank load pump

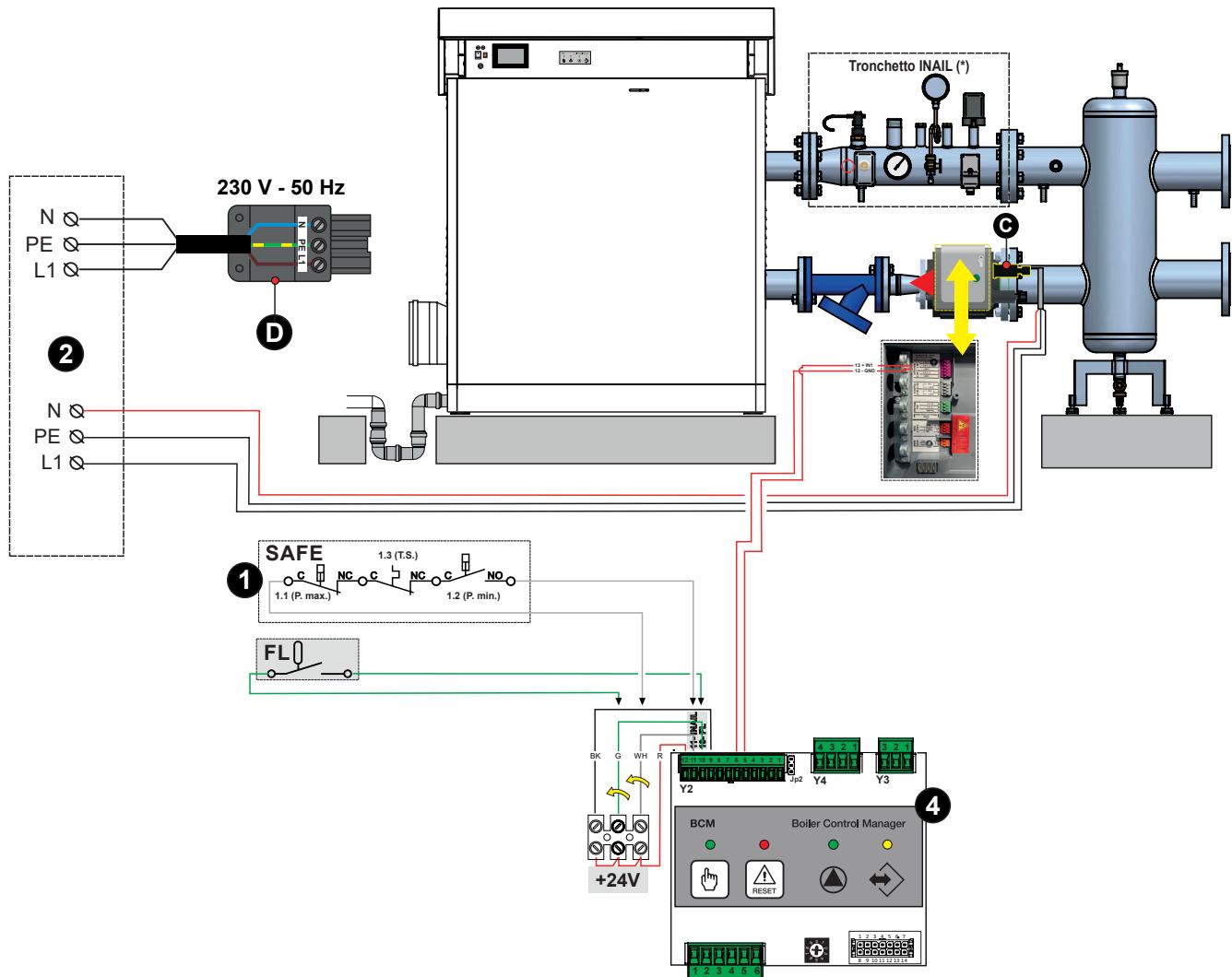



Connect the cables as indicated (Y4 1-2)  
Connect the cables as indicated (Y3 1-2-3)

Stemp. ACC. Storage Tank Temperature Sensor



If the storage tank temperature sensor is connected, the DHW is automatically activated when the boiler is powered.  
The code (803) **Srv** (it is automatically updated)




Connect the temperature sensor cables as indicated (Y2 6-8).



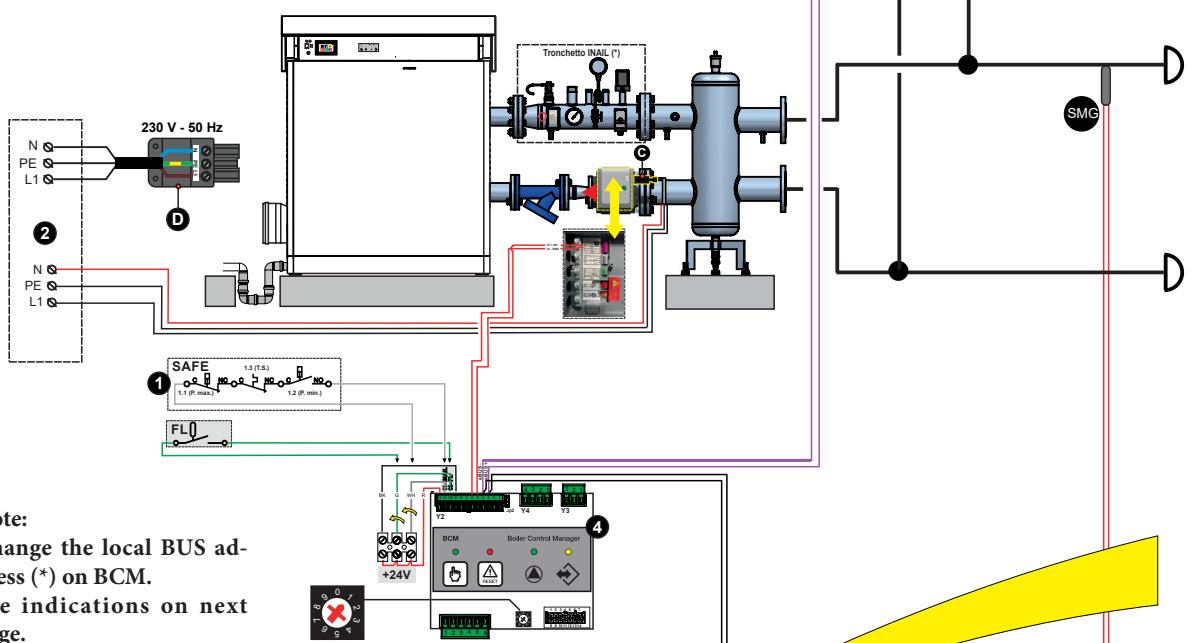
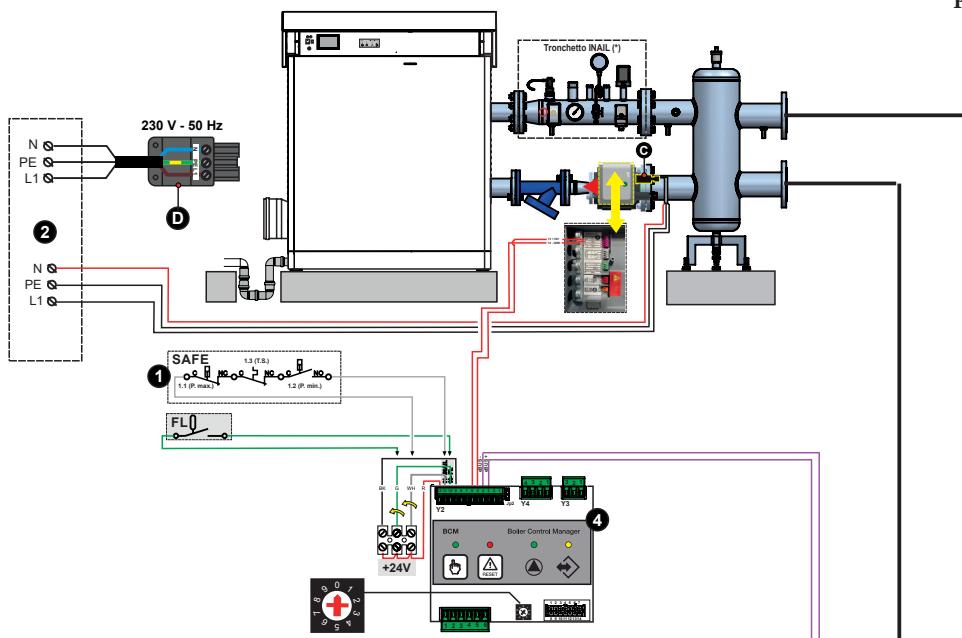
## Example of connection diagram:

Power supply, INAIL, Modulation pump, external probe, Flow switch.

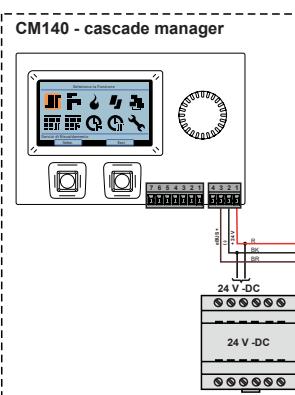


| LEGENDA             |                                                 |
|---------------------|-------------------------------------------------|
| No.                 | Description                                     |
| 1                   | Safety components                               |
| 2                   | Main electrical panel (Not supplied)            |
| B                   | Services connection return terminal board       |
| D                   | Wieland mobile 230 V - 50Hz power supply socket |
| FL                  | Terminals for flow switch                       |
| SE                  | Terminals for External probe                    |
| SMG                 | Global flow probe                               |
| C                   | Pump power supply connector                     |
| Pump terminal board | AI 1                                            |
| 0-10V connection    | 13 = + In<br>12 = - GND                         |



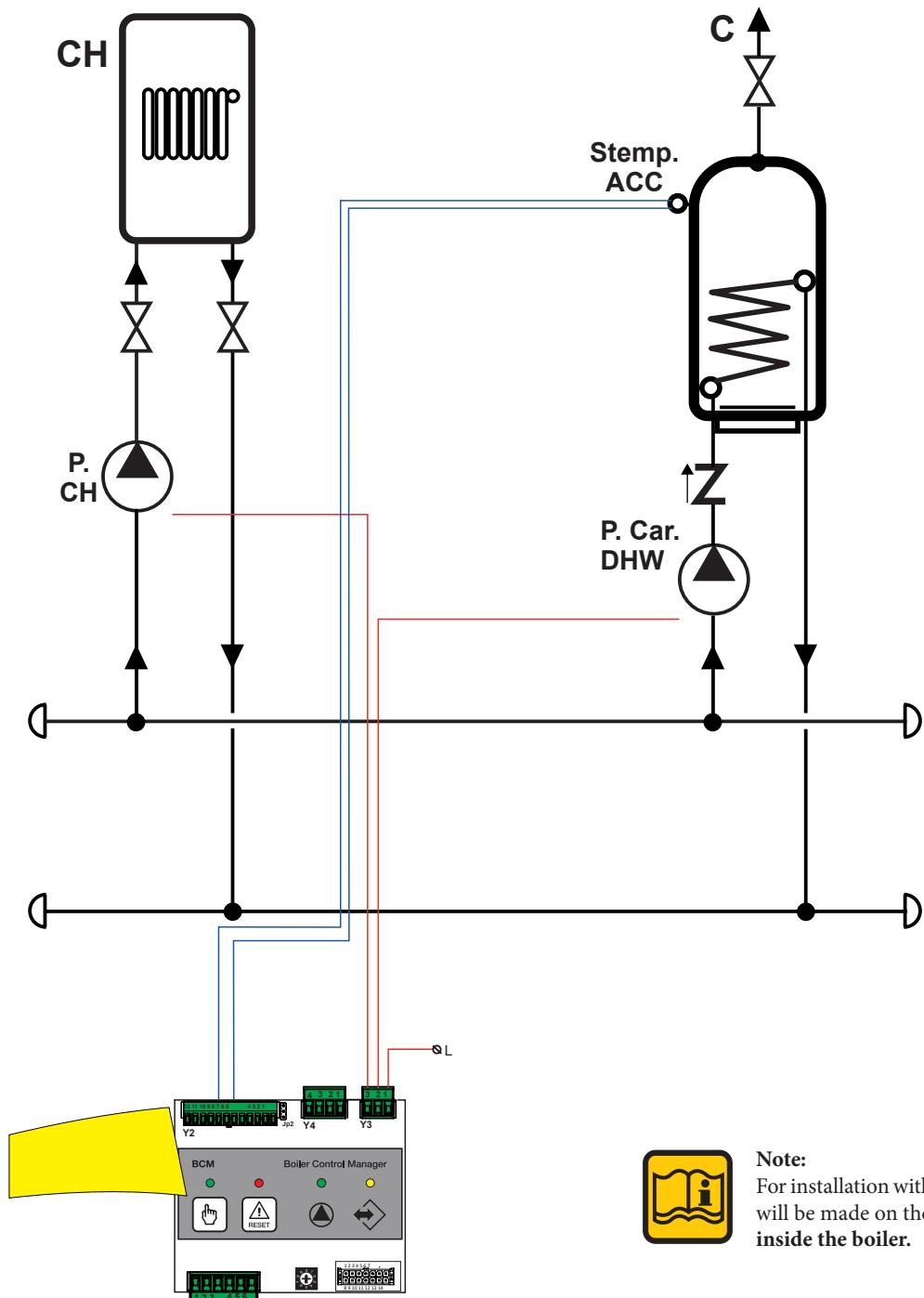


To activate the 0-10 V function, follow the instructions in the pump manual.  
(main menu)




## INSTRUCTIONS FOR THE INSTALLER

Example of connection diagram: 2 Ares Tec in battery controlled by Cascade Manager.

PRIMARY LOOP




**Note:**  
Change the local BUS address (\*) on BCM.  
See indications on next page.



Example of connection diagram: 2 Ares Tec in battery controlled by Cascade Manager with Direct Zone plus Production of Domestic Hot Water.

SECONDARY LOOP



**Note:**

For installation with a single boiler, the above connections will be made on the return terminal board (BCM board) **inside the boiler**.



**Note:**

When cascading 2 or more boilers, the local BUS address (\*) must be changed on the BCM.



If the rotary selector (\*) is positioned as default, namely at 0, to change the local BUS address = 1 - 2 - 3 etc. of each boiler, use Ufly: parameter 784 (from Device Management -> hcm -> parameter 784).

**Note**

Example diagram, consider the total nominal flow rate, any non-return valves (not supplied), moreover, the efficiency of the flow switches must be checked at each flow rate in modulation



**Note**

For configuration of boiler cascade management parameters, see the specific installation manual





### 3.13 FIRST IGNITION

#### Preliminary checks.



**First ignition must be carried out by professionally authorised company. Immergas will not be held liable in case of damage caused to people, animals or property due to failure to observe the above.**



#### Danger!

**Prior to commissioning the appliance fill the trap through the filler hole and make sure the condensate is draining correctly.**

**If the appliance is used with an empty condensate drain trap the danger of poisoning subsists following a flue gas leak.**

Prior to commissioning the boiler it is advisable to make sure that:

- installation fulfils the standard specifications and requirements in force for both the gas and electrical part;
- the supply of combustion air and the evacuation of flue exhaust are carried out correctly in accordance with standard specifications and requirements in force;
- the fuel supply system is sized for the boiler's flow rate and is equipped with all of the safety and control devices required by regulations in force;
- the power supply for the boiler is 230V - 50Hz;
- the system has been filled with water (pressure gauge 0.8/1 bar with the pump off);
- any cut-off dampers on the system are open;
- the required gas corresponds to the one used for boiler calibration: otherwise have the boiler converted for use with the available gas (see section: "ADAPTATION FOR USE WITH OTHER GASES"); this operation must be carried out by authorised company in accordance with regulations in force;
- the gas supply valve is open;
- there are no gas leaks;
- the external main switch is engaged;
- the system safety valve on the boiler responds to operation and is connected to the sewer drain;
- the condensate drain trap is filled with water;
- there are no water leaks;
- the conditions for aeration and minimum distances to carry out any maintenance operations are fulfilled.

#### Switching the boiler on and off

To turn the boiler on and off read the manual for the HSCP regulator.

#### Information for the system manager

The individual in charge of the system must be instructed in the use and operation of the heating system, in particular:

- Supply the system manager with the "THE SYSTEM MANAGER'S INSTRUCTIONS FOR USE", as well as all other documents attached the appliance contained in the envelope in the packaging. **The system manager must keep this documentation safe so that it is available for future consultation.**
- Inform the system manager of the importance of aeration vents and the flue exhaust system, highlighting how essential they are and how it is strictly forbidden to change them.
- Inform the system manager of the requirement to check the system's water pressure, as well as operations to restore it.
- Inform the system manager on how to correctly regulate the temperature, control units/thermostats and radiators in order to save energy.
- Remember that it is compulsory to carry out regular maintenance on the system and measure combustion output (as per national law).
- If the appliance is sold or transferred to another owner or if the owner moves, leaving the appliance behind, always ensure the manual accompanies the appliance so that it may be consulted by the new owner and/or installer.



### 3.14 ON-SITE MEASUREMENT OF THE COMBUSTION EFFICIENCY

#### 3.14.1 ENABLE THE CALIBRATION FUNCTION



##### ATTENTION!

Function reserved exclusively to Authorised Service Centres.



##### ATTENTION!


This function is explained in chapter 6 (Generator control) of the **HSCP installation and maintenance manual**.

#### 3.14.2 POSITIONING THE PROBES

In order to determine the combustion efficiency, the following measurements must be taken:

- measure the combustion air temperature
- measure the flue gas temperature and content of CO<sub>2</sub> withdrawn from the hole 2.

Take the specific measurements with the generator at full speed (see Par. 3.14.1).

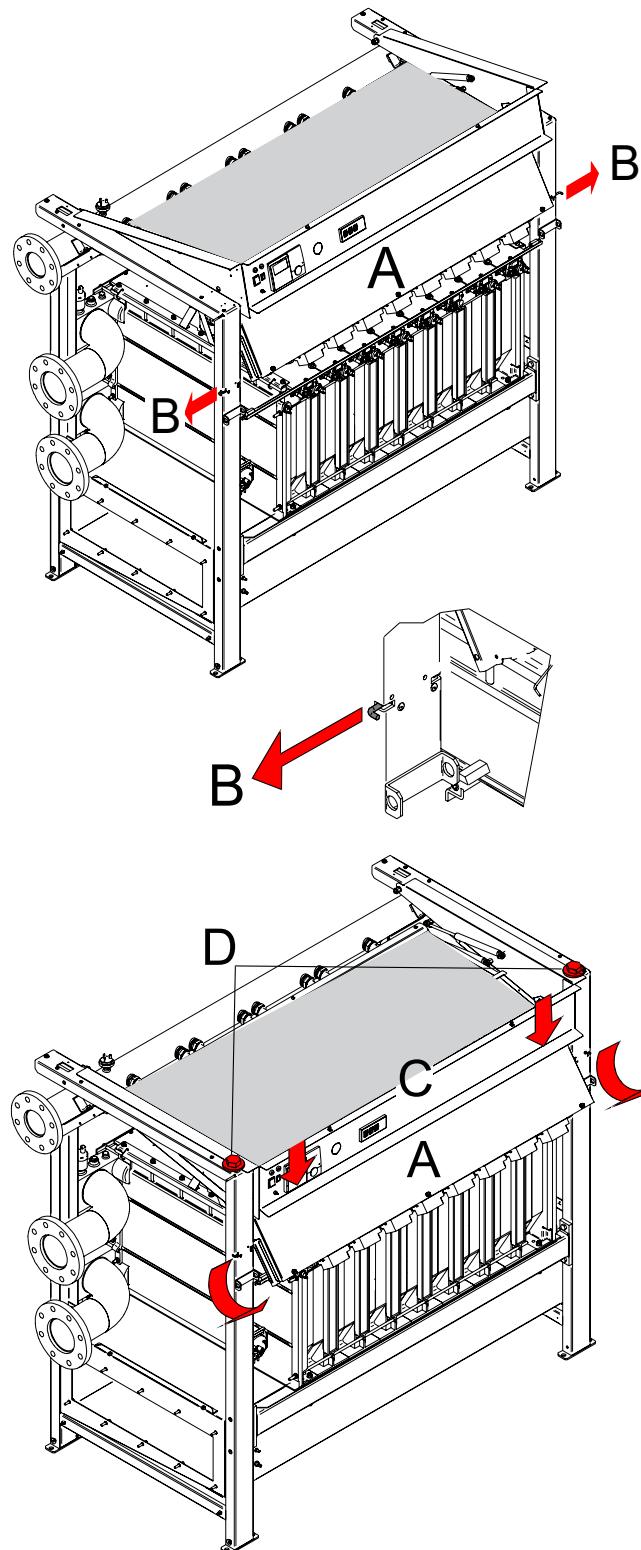


All boilers leave the factory calibrated and approved, nevertheless, if the calibration conditions need to be changed it is necessary to re-calibrate the gas valve.



##### ATTENTION!

Remove cap 2, attach the red cap 3 to the flue point 1. Place the CO<sub>2</sub> analysis probe 4 in the hole on the cap. Once the measurement has been made, take the cap out and use the relative cap 2 to close the flue exhaust point back up.


### 3.15 BURNER ADJUSTMENT



All boilers are factory calibrated and tested. If necessary, recalibrate the gas valves (MODULE1, MODULE 2, etc.)

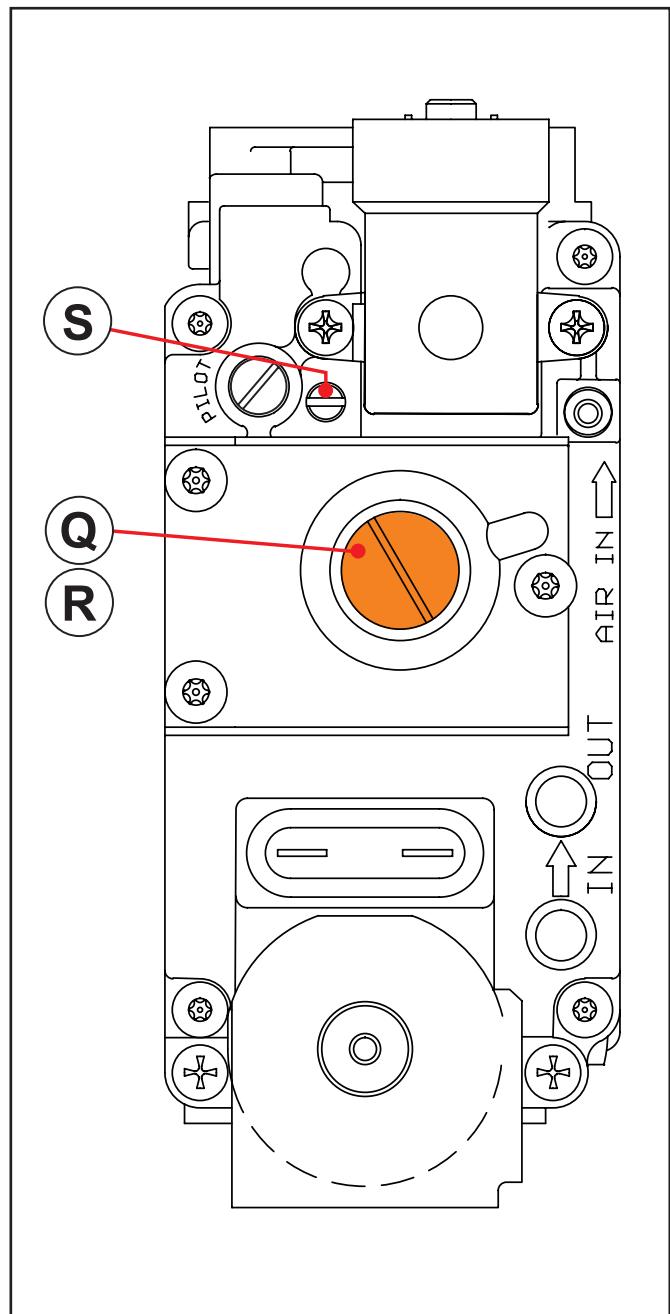


All of the instructions below are provided for the exclusive use of **authorised assistance** personnel.

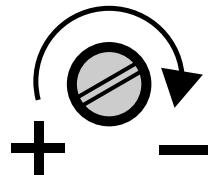


**ATTENTION!**

To access the gas valves more easily, unhook electric panel "A" by acting on spring "B" (right and left).


Turn electrical panel "A" slightly and lower tilting panel "C".

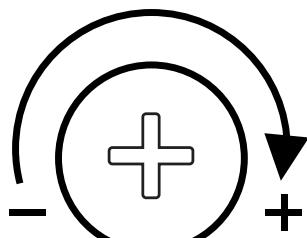
For the amount of time required for the adjusting operation, fix tilting panel "C" in place using 2 M4 screws + "D" washers (contained in the documentation bag).


**1) Adjustment at maximum power:**

- Remove the cap and insert the CO2 analysis probe into the flue gas output of the intake/exhaust terminal, see chap. 3.14.2.

- Start the boiler in "calibration" mode at MAXIMUM POWER (see 3.14.1)
- Once the burner is on, check:  
that the CO2 value at "MAXIMUM" power corresponds with what is indicated in the "NOZZLES - PRESSURES" table.
- If it does not correspond, correct it by turning screw "S" CLOCKWISE to decrease it, or ANTICLOCKWISE to increase it.  
(see NOZZLES -FLOW RATES - PRESSURES table).



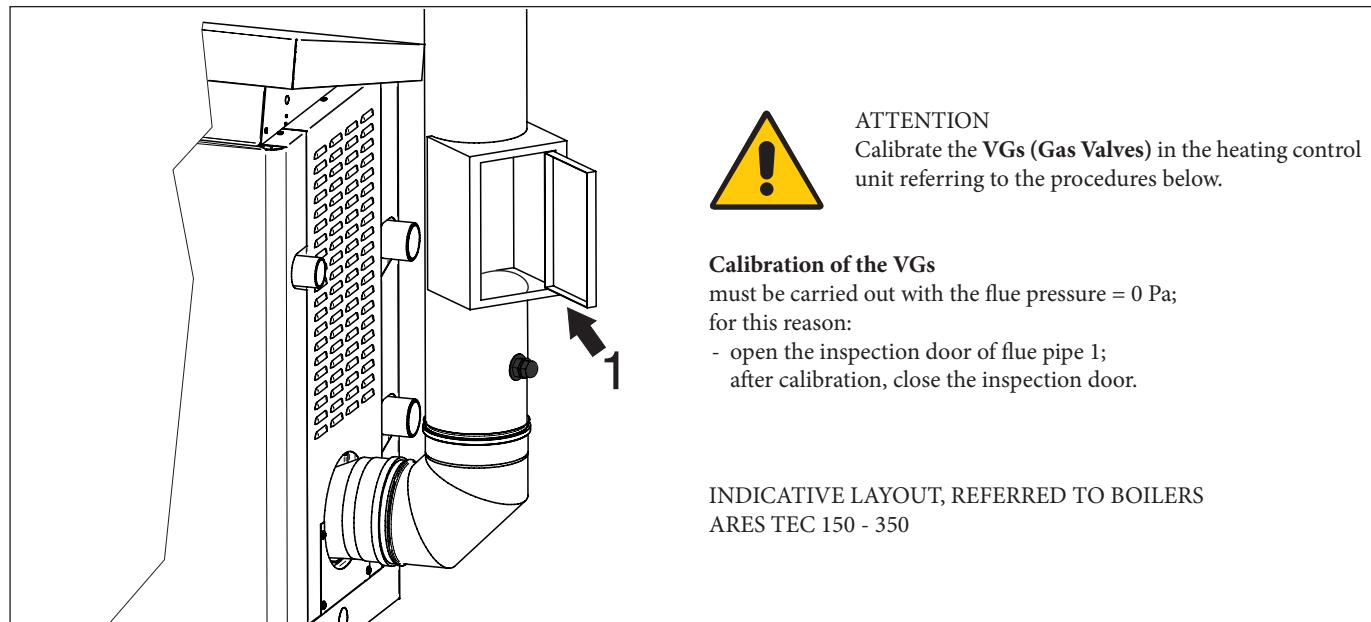

**(S)  
MAXIMUM POWER  
ADJUSTING SCREW**



**2) Adjustment at minimum power:**

- Start the boiler in "calibration" mode at MINIMUM POWER (see 3.14.1)
- Once the burner is on, check:  
that the CO2 value at "MINIMUM" power corresponds with what is indicated in the "NOZZLES - PRESSURES" table.
- If necessary, correct the value by removing the screwing plug "Q" and turning the screw "R"; CLOCKWISE to increase or ANTI CLOCKWISE to decrease.  
(see NOZZLES -FLOW RATES - PRESSURES table).

**(R)  
MINIMUM POWER  
ADJUSTING SCREW**




## INSTRUCTIONS FOR THE INSTALLER

### Follow this procedure to adjust the other modules as well.

If the measured flow rate is too low, make sure the supply and draining systems (the supply and draining pipes) are not obstructed.

If they are not obstructed, make sure the burner and/or exchanger are not dirty.



#### ATTENTION

Calibrate the **VGs (Gas Valves)** in the heating control unit referring to the procedures below.

#### Calibration of the VGs

must be carried out with the flue pressure = 0 Pa;  
for this reason:

- open the inspection door of flue pipe 1;  
after calibration, close the inspection door.

### 3) Completing basic calibration

- Check CO<sub>2</sub> values at the minimum and maximum flow rate.
- Touch up if necessary.
- Close the cap (2 - 3) for the flue inspection point back up (1)
- **Check there are no gas leaks.**

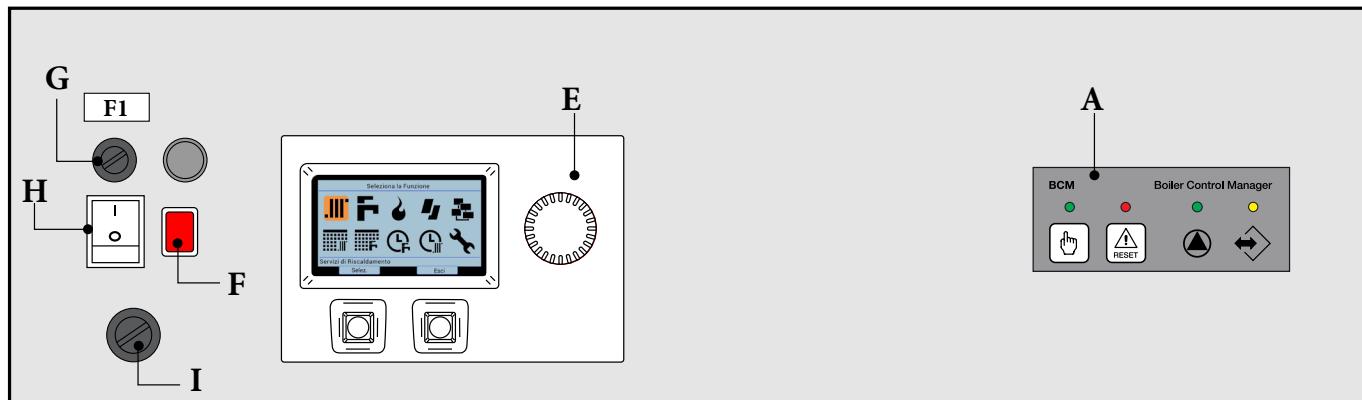


For smooth operation, calibrate the CO<sub>2</sub> values taking care to observe the values in the table.



**NOTE: Do not force the adjusting screw limit switch limits.**

### NOZZLES - PRESSURES - FLOW RATES TABLE


| Type of Gas                                                   | ARES TEC ErP: 440 - 550 - 660 - 770 - 900 |                        |                   |           |     |                            |      |                               |     |                       |
|---------------------------------------------------------------|-------------------------------------------|------------------------|-------------------|-----------|-----|----------------------------|------|-------------------------------|-----|-----------------------|
|                                                               | Supply pressure<br>(mbar)                 | Ø Noz-<br>zles<br>(mm) | Diaphragm<br>(mm) | Fan speed |     | CO <sub>2</sub> levels (%) |      | (*) O <sub>2</sub> levels (%) |     | Power at ignition (%) |
| Nat. gas (G20)                                                | 20                                        | 9                      | -                 | 28        | 108 | 8.8                        | 8.8  | 5.2                           | 5.2 | 50                    |
| Nat. gas (G25)                                                | 25                                        | 9                      | -                 | 28        | 113 | 9.1                        | 8.5  | -                             | -   | 50                    |
| Propane (G31)                                                 | 37                                        | 9                      | -                 | 28        | 101 | 10.8                       | 10.6 | -                             | -   | 50                    |
| ±0.2 Acceptable CO <sub>2</sub> range for G20/G25             |                                           |                        |                   |           |     |                            |      |                               |     |                       |
| ±0.4 Acceptable O <sub>2</sub> range for 20%H <sub>2</sub> NG |                                           |                        |                   |           |     |                            |      |                               |     |                       |
| ±0.2 Acceptable CO <sub>2</sub> range for G31                 |                                           |                        |                   |           |     |                            |      |                               |     |                       |



(\*) If a Hydrogen Ready installation is envisaged, refer to the table above for all calibration operations, with the O<sub>2</sub>% content in the flue gas. O<sub>2</sub> values refer to gas 20%H<sub>2</sub>NG



### 3.16 EMERGENCY AND SAFETY OPERATIONS



#### BCM

The BCM board prevents the system from shutting down if management of the HSCP system or main boiler system are out of service (see the BCM manual).

A YELLOW LED = flashing (communication between BMM and BCM) ok

GREEN LED = on (Pump On)

RED LED = on (Error Code detected)

E HSCP Control panel

F Starting from ARES 350 Tec ErP Intervention lamp TLG General Limit Thermostat

G Fuses:

1 = 6.3 A

H Main Switch

I Only for ARES 350 Tec ErP

When TLG General Limit Thermostat comes on it cuts off power to the boiler and light F comes on. To re-arm it, take off the cap and press

#### Condensate level sensor position



NOTE: the devices are positioned under the casing next to the control unit.



NOTE: the emergency function only switches the burners on in the boiler to 100% in flow. All system loads, including the manifold pump, must be controlled manually.



# 4 INSPECTIONS AND MAINTENANCE



Inspections and maintenance carried out to state of the art and at regular intervals, as well as the exclusive use of original spare parts, are of primary importance for smooth operation and to guarantee long boiler life. Annual maintenance of the appliance is compulsory, in accordance with Legislation in force.



Failure to carry out Inspections and Maintenance can cause material and personal damage.



**OBLIGATION!**  
Wear protective gloves.



**Scalding hazard!**  
Be careful during the maintenance operations.

## 4.1 INSTRUCTIONS FOR INSPECTION AND MAINTENANCE

Only original **IMMERGAS** spare parts must be used to ensure a long life for all of the functions of your appliance, and to avoid changing the conditions of the approved standard product. When a part needs to be replaced:

- Disconnect the appliance from the mains power supply and make sure it cannot be reconnected accidentally.
- Shut the gas cut-off valve upstream of the boiler.
- If necessary, and based on the work that needs to be carried out, close any cut-off valves on the heating flow and return, as well as the cold water inlet valve.

After completing all maintenance operations, restore the boiler's operation.

- Open the heating flow and return, as well as the cold water inlet valve (if it was previously closed).
- Relieve and, if necessary, restore the pressure in the heating system, until reaching pressure of 0.8/1.0 bar.
- Open the gas cut-off valve.
- Apply voltage to the boiler.
- Make sure the appliance is water-tight, on the gas side and the water side.

**Table of resistance values based on the heating probe (SR) and the heating return probe (SRR) temperature**

| T°C | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0   | 32755 | 31137 | 29607 | 28161 | 26795 | 25502 | 24278 | 23121 | 22025 | 20987 |
| 10  | 20003 | 19072 | 18189 | 17351 | 16557 | 15803 | 15088 | 14410 | 13765 | 13153 |
| 20  | 12571 | 12019 | 11493 | 10994 | 10519 | 10067 | 9636  | 9227  | 8837  | 8466  |
| 30  | 8112  | 7775  | 7454  | 7147  | 6855  | 6577  | 6311  | 6057  | 5815  | 5584  |
| 40  | 5363  | 5152  | 4951  | 4758  | 4574  | 4398  | 4230  | 4069  | 3915  | 3768  |
| 50  | 3627  | 3491  | 3362  | 3238  | 3119  | 3006  | 2897  | 2792  | 2692  | 2596  |
| 60  | 2504  | 2415  | 2330  | 2249  | 2171  | 2096  | 2023  | 1954  | 1888  | 1824  |
| 70  | 1762  | 1703  | 1646  | 1592  | 1539  | 1488  | 1440  | 1393  | 1348  | 1304  |
| 80  | 1263  | 1222  | 1183  | 1146  | 1110  | 1075  | 1042  | 1010  | 979   | 949   |
| 90  | 920   | 892   | 865   | 839   | 814   | 790   | 766   | 744   | 722   | 701   |

Relation between the temperature (°C) and nom. resistance (Ohm) of the heating probe SR and the heating return probe SRR.

Example: At 25°C, the nominal resistance is 10067 Ohm





We urge you to have authorised company fulfil requirements regarding periodic maintenance checks.

Since dust is extracted from the inside, the resistance on the flue side, through the boiler, will increase, leading to a decrease in the heat load (and, consequentially, in the power).

Prior to cleaning, check the heat load and the percentage of CO<sub>2</sub> (see Par. 3.13). If the measured load (with a correct CO<sub>2</sub> level) is within 5% of the value indicated, the boiler does not need to be cleaned.

The operation must therefore be limited to cleaning the trap.

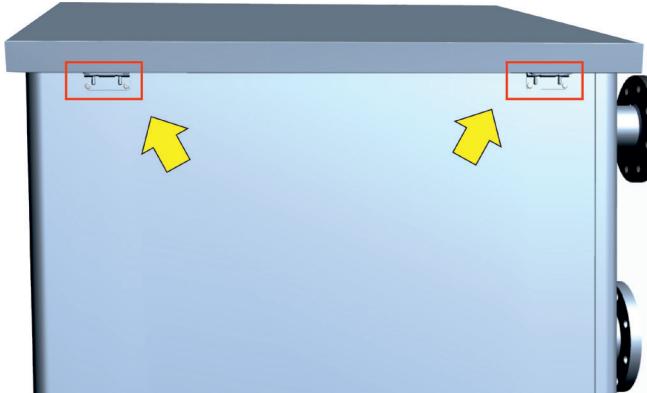


#### ATTENTION!

A drop in the heat load can be caused by an obstruction in the exhaust channel or air intake pipe. First of all make sure that this is not the cause.

If there is a drop in the heat load greater than 5%, check how clean the burner condensate-collection pan is. Also clean the trap.

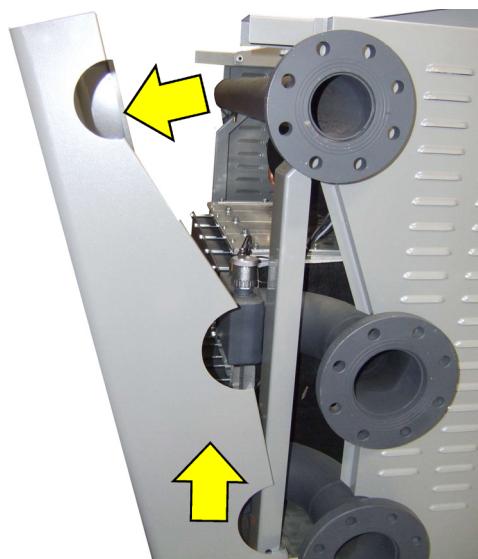
#### First phase – Disassembly.


- Shut off the electrical and gas supplies **making sure the valve is firmly shut.**
- Remove:
  - all of the casings;



- turn the required screw to lift the cover;

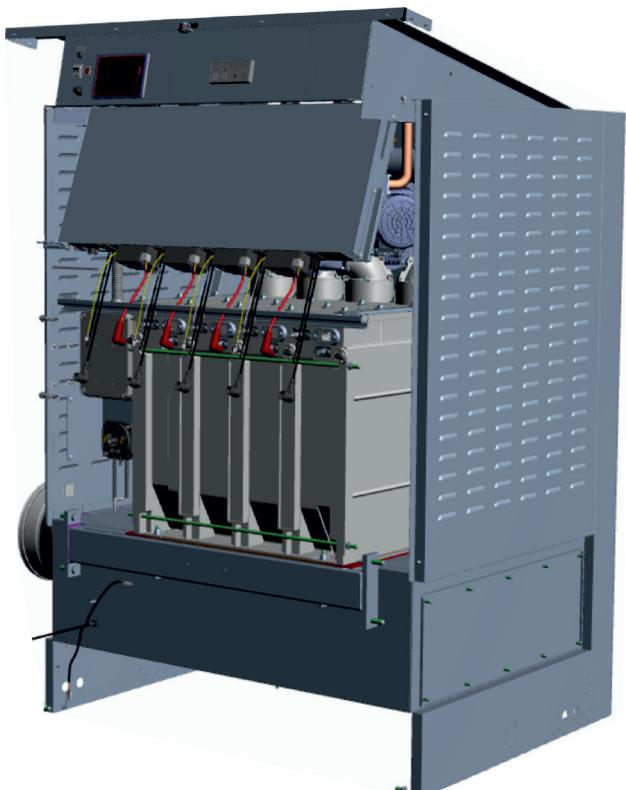
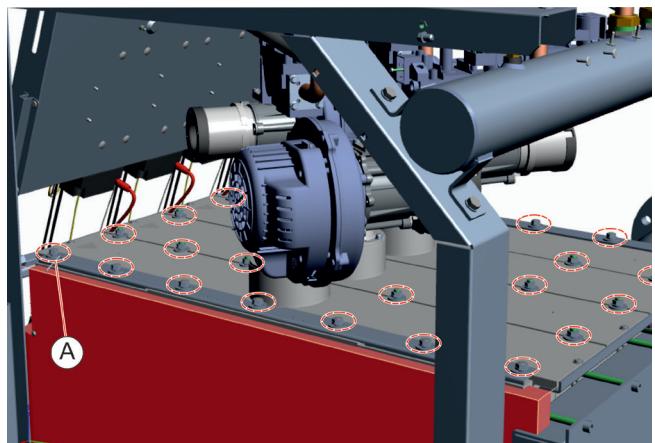



- take out the 2 cover clamping screws;



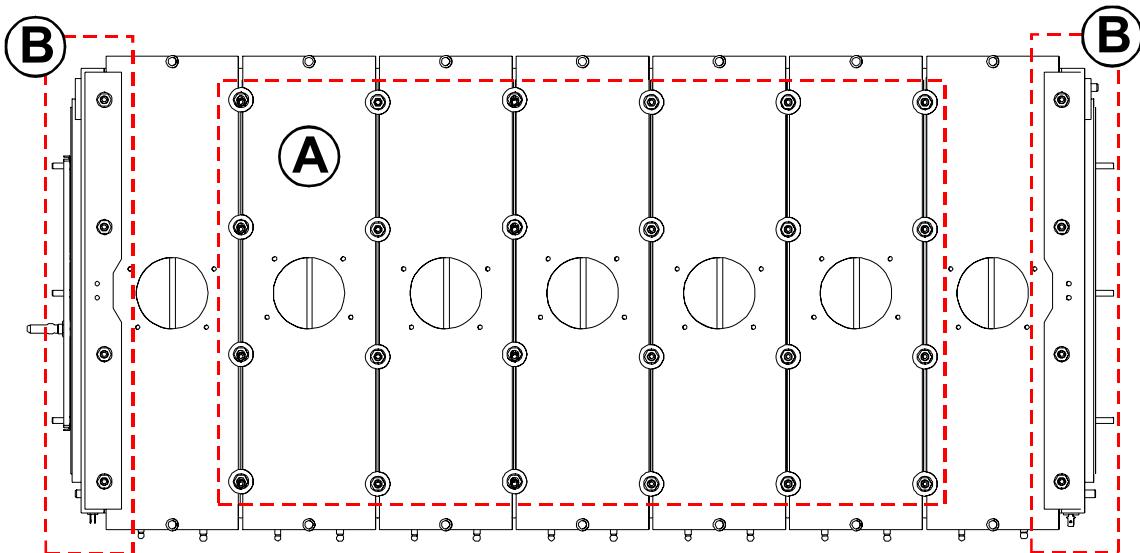
- act on the two rear closing hinges to take out the cover;



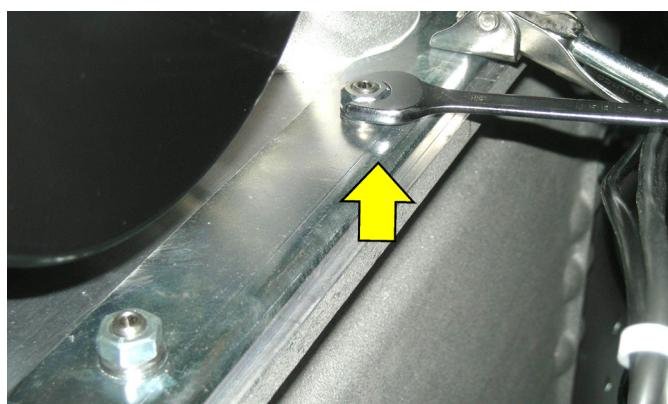



- take out the rear, front and side casing clamping screws;



## INSPECTIONS AND MAINTENANCE



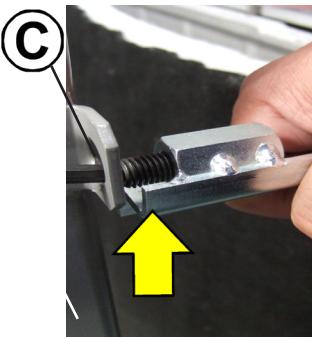
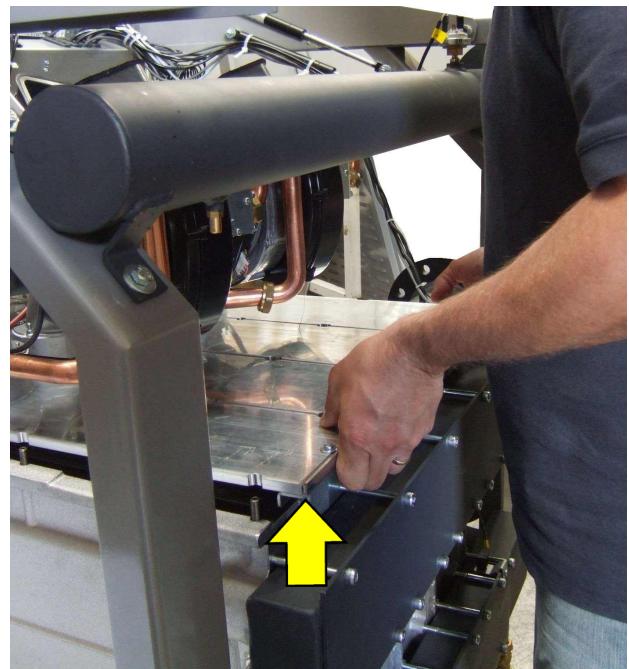

- Element screws




- take out screws "A" from each element  
(with 13mm socket wrench and flat key);

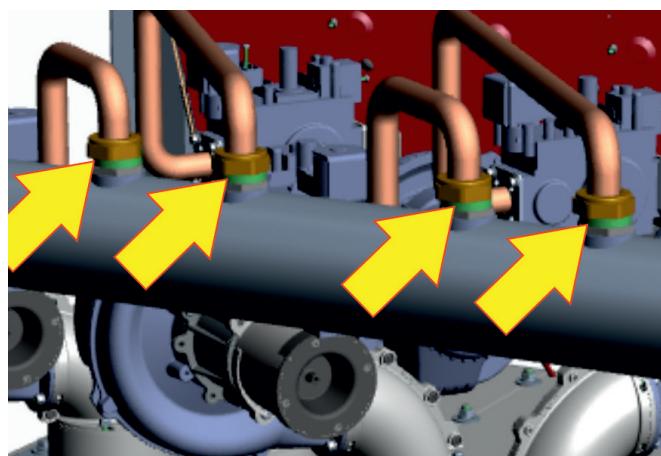
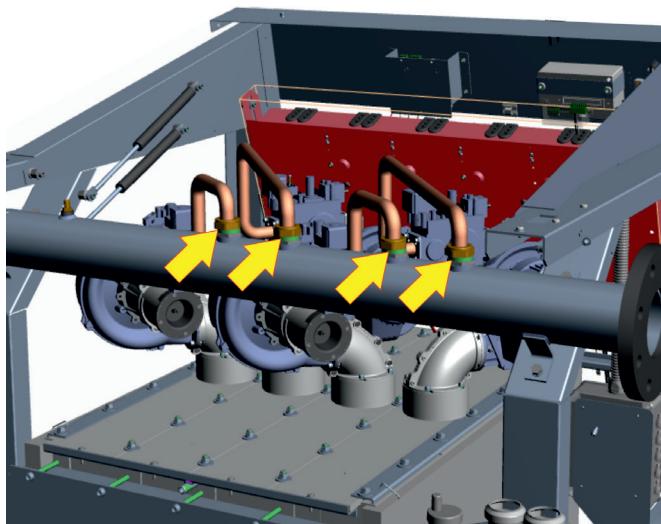
- Element screws





- take out screws "A" from each element (with 13 mm socket key);



- take out screws "B" (with 13 mm socket key / with 13 mm hex key) and take out the clamping plates;

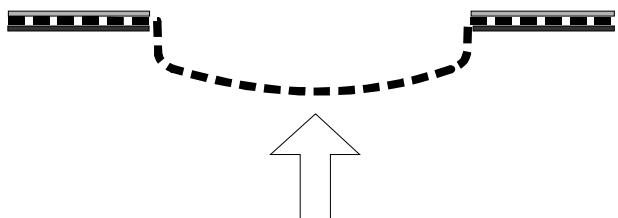

## INSPECTIONS AND MAINTENANCE



- lift the **front** burner block slightly and take out 2 pins with a 5 mm hex key, until you reach holes "C" (left and right side);

- lift the burner block (rear part).




- take out the gas fittings from the gas manifold with a 36 mm flat key;

**Second phase – Cleaning.**

- Take out the gaskets and burners.
- Dry clean the burners using compressed air and operating from the "flame side".
- Visually check the state of the welding on the angulars and burner mesh.



**The burner gaskets must be replaced every time cleaning operations are carried out.**



- Wash the combustion chamber with water being careful not to get the electrical cables wet.
- During this operation is necessary to make sure that the condensate exhaust pipe is always unobstructed so that the wash water does not leak out from the inspection opening.
- Blow the combustion chamber with compressed air to remove any dirt that is still attached to the studs.
- When the elements have been washed make sure that the condensate drain trap is unobstructed: clean if necessary.
- Inspect the exhaust evacuation pipe and the flue.

**Third phase - Reassembly.**

- Once the body and/or burners have been cleaned, put the burners back in their places.
- Put the new graphite gaskets in place.



**Proceed in the reverse order for reassembly, being careful to tighten the screws that clamp the mixer unit/fans to the body, at a torque of 13 Nm.**



**ATTENTION**  
**IT IS NECESSARY TO CHANGE THE SEALING GASKETS ON EACH BURNER AT EVERY MAINTENANCE OPERATION.**

- Before opening the gas supply valve make sure that the previously loosened gas fitting is firmly tightened. In order to do so open the valve and check the seal using soapy water.
- As a burner is being ignited, immediately check the seal between each single gas valve and relative premixing chamber.
- Perform a combustion analysis and check the parameters.
- Make sure that all of the previously opened gas pressure points are closed.



## INSPECTIONS AND MAINTENANCE

### 4.2 PROGRAMMING THE OPERATION PARAMETERS



ATTENTION!

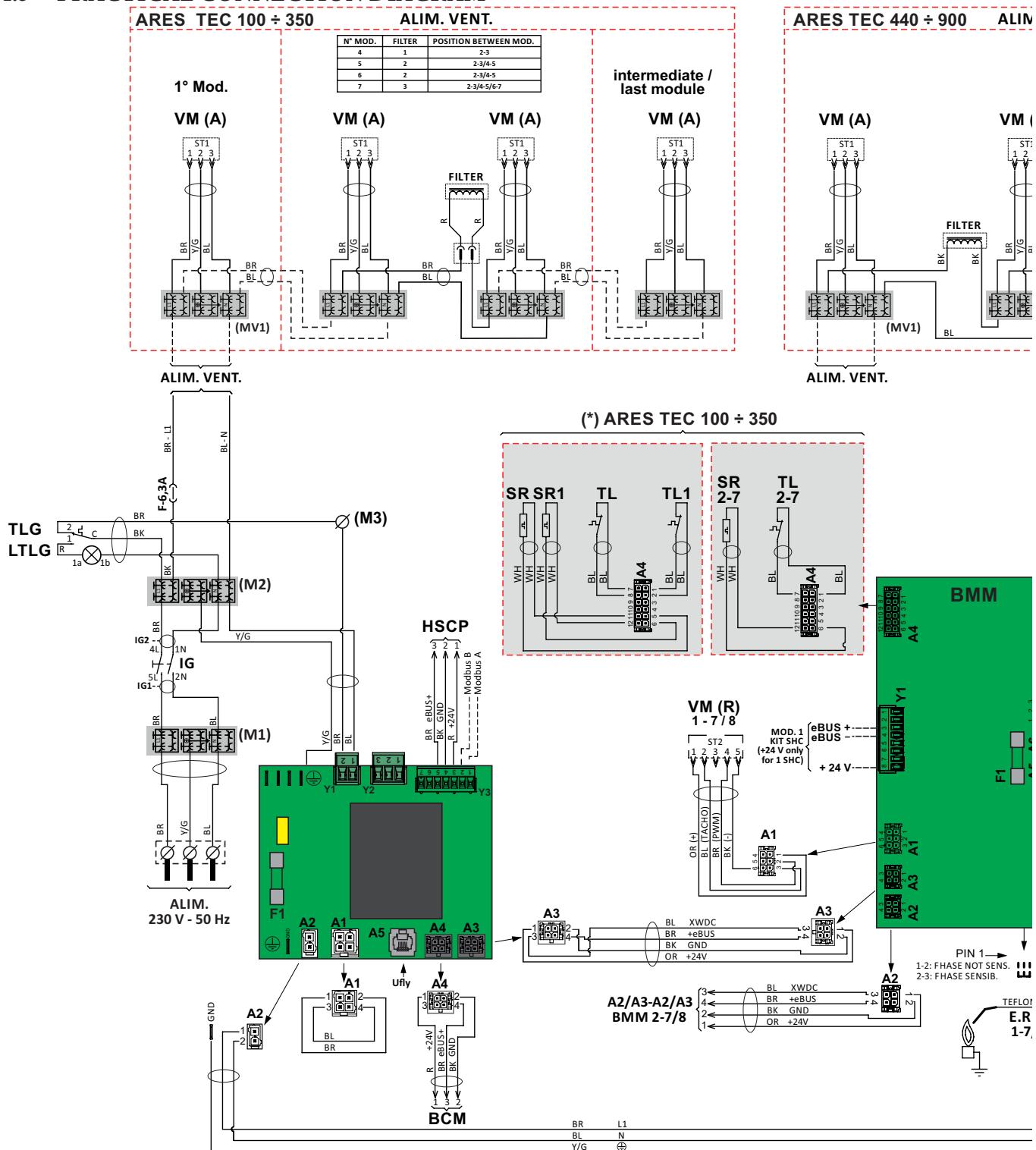
Function reserved exclusively to Authorised Service Centres.



ATTENTION!

This function is explained in chapter 8 (Device management) of the HSCP installation and maintenance manual.

| BCM parameters |       |                                                              |        |      |       |                  |
|----------------|-------|--------------------------------------------------------------|--------|------|-------|------------------|
| Code           | Symb. | PARAMETER DESCRIPTION                                        | Unit   | Min  | Max   | Factory settings |
| 803            | Srv   | Services enabled                                             |        | 16   | 27    | 19               |
| 483            | rP    | Generator: Maximum Differential Temperature                  | °K     | 0,0  | 50,0  | 25               |
| 34             | HY    | Burner Hysteresis                                            | °K     | 5,0  | 20,0  | 5,0              |
| 31             | HL    | CH#1: Minimum Setpoint                                       | °C     | 20,0 | 40,0  | 30,0             |
| 39             | HH    | CH#1: Maximum Setpoint                                       | °C     | 45,0 | 85,0  | 85,0             |
| 799            | AC    | Input 0/10V                                                  |        | 0    | 3     | 1                |
| 376            | DI1   | Programmable Input #1                                        |        | 0    | 2     | 0                |
| 322            | Po    | Pump Post-circulation                                        | min.   | 1    | 10    | 3                |
| 341            | PL    | Pump Minimum Control                                         | Volt   | 0    | 10    | 3                |
| 313            | Pr    | Pump Maximum Control                                         | Volt   | 0    | 10    | 10               |
| 792            | CHP   | CH (Central heating): Maximum Modulation.                    | %      | 0    | 100   | 100              |
| 611            | POT   | Generator: Maximum Parallel Error (simultaneous supply)      | °K     | 0    | 30    | 5                |
| 612            | POL   | Generator: Maximum Parallel Modulation (simultaneous supply) | %      | 0    | 100   | 0                |
| 650            | dL    | Minimum D.H.W. Setpoint                                      | °C     | 25,0 | 45,0  | 35,0             |
| 385            | dH    | Maximum D.H.W. Setpoint                                      |        | 50,0 | 65,0  | 65,0             |
| 360            | dt    | Storage tank adjustment                                      |        | 0    | 15    | 0                |
| 656            | drT   | Domestic Hot Water: Differential Temperature Requested       | °K     | -20  | 20    | 4                |
| 657            | drH   | Domestic Hot Water: Requested Temp. Hysteresis               | °K     | 1    | 20    | 8                |
| 310            | DpT   | Domestic Hot Water Pump: Post-circulation                    | sec.   | 5    | 600   | 60               |
| 660            | dbT   | Domestic Hot Water: Maximum Boiler Temperature               | °C     | 50,0 | 85,0  | 75,0             |
| 48             | ChSet | CH#1: Setpoint                                               | °C     | 20,0 | 85,0  | 84,0             |
| 64             | ChPO1 | CH#1: Parallel Supply                                        |        | 0    | 1     | 0                |
| 346            | FL    | Minimum Modulation                                           | %      | 0    | 100,0 | 31,0             |
| 800            | mB    | Burners: minimum number of burners inserted                  |        | 1    | 8     | 1                |
| 616            | BSt   | Generator: Insertion Time (generator cascade)                | sec.   | 30   | 900   | 120              |
| 613            | BRt   | Generator: Removal Time (generator cascade)                  | sec.   | 30   | 900   | 120              |
| 336            | HS    | Temperature Gradient                                         | °C/min | 1    | 30    | 5                |
| 353            | HP    | CH PID: Proportional                                         | °K     | 0    | 50    | 25               |
| 354            | HI    | CH PID: Integrative                                          | °K     | 0    | 50    | 12               |
| 478            | Hd    | CH PID: Derivative                                           | °K     | 0    | 50    | 0                |
| 816            | MI    | ModBus Address                                               |        | 1    | 127   | 1                |
| 817            | MT    | Timeout Modbus                                               | sec.   | 0    | 240   | 30               |
| 896            | TU    | °Fahrenheit                                                  |        | 0    | 1     | 0                |
| 309            | St    | Application Code                                             |        | 0    | 1     | 0                |
| 368            | VA1   | Programmable Relay #1                                        |        | 0    | 1     | 0                |
| 369            | VA2   | Programmable Relay #2                                        |        | 0    | 1     | 1                |
| 771            | PS    | Water Pressure Sensor                                        |        | 0    | 1     | 0                |
| 768            | LG    | Minimum Gas Pressure Sensor                                  |        | 0    | 1     | 1                |
| 793            | COC   | Chimney Obstruction Sensor                                   |        | 0    | 2     | 2                |
| 622            | FS    | Minimum Flow Sensor                                          |        | 0    | 7     | 1                |

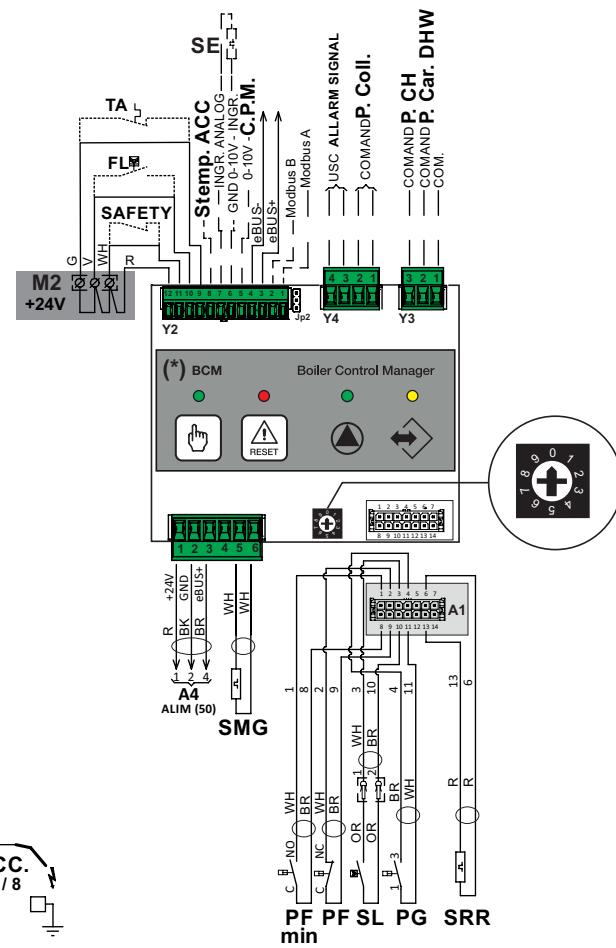
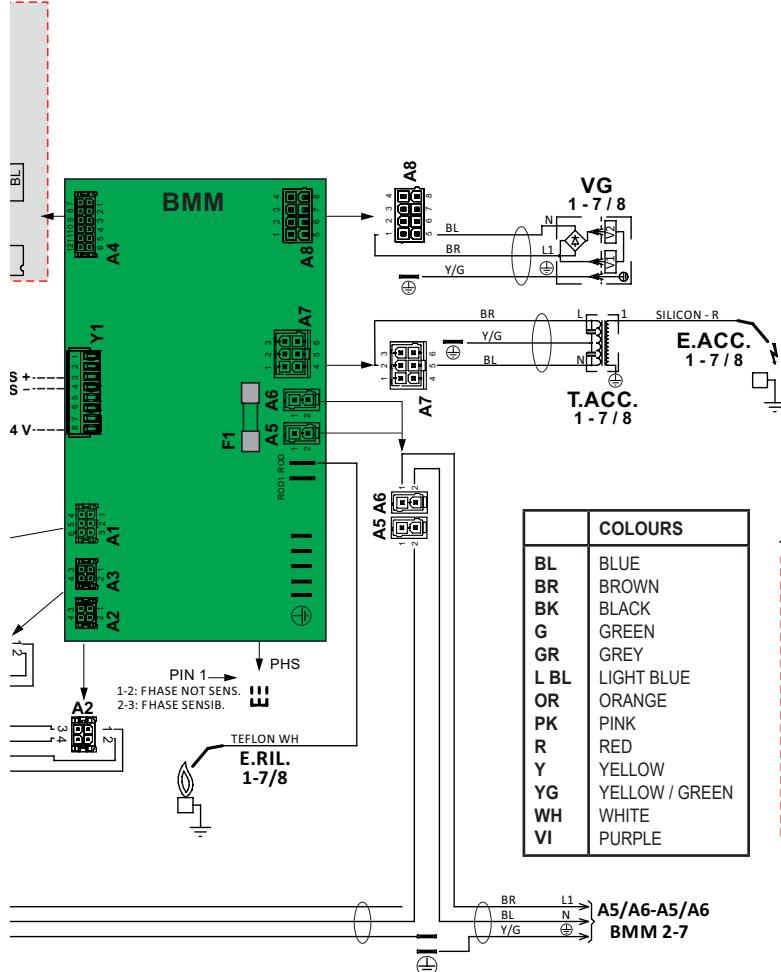
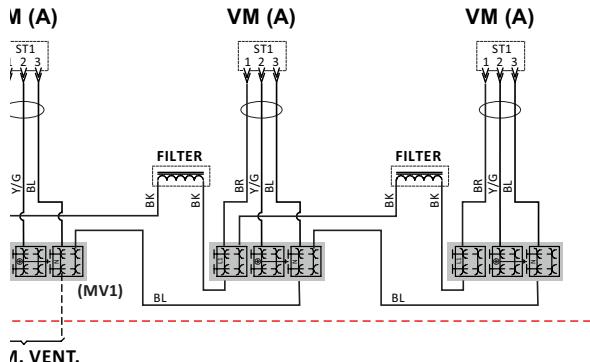



| BMM parameters |       |                                             |        |     |       |                  |
|----------------|-------|---------------------------------------------|--------|-----|-------|------------------|
| Code           | Symb. | PARAMETER DESCRIPTION                       | Unit   | Min | Max   | Factory settings |
| 803            | Srv   | Services enabled                            |        | 0   | 1     | 1                |
| 48             | ChSet | CH#1: Setpoint                              | °C     | 30  | 95    | 80               |
| 784            | BC    | Local BUS address                           |        | 0   | 11    | 0                |
| 816            | MI    | ModBus Address                              |        | 1   | 127   | 1                |
| 817            | MT    | Timeout Modbus                              | sec    | 0   | 240   | 30               |
| 896            | 0     | Unknown Parameter                           |        | 0   | 1     | 0                |
| 799            | AC    | Input 0/10V                                 |        | 0   | 2     | 0                |
| 376            | DI1   | Programmable Input #1                       |        | 0   | 3     | 0                |
| 322            | Po    | Pump Post-circulation                       | min    | 1   | 30    | 3                |
| 341            | PL    | Pump Minimum Control                        | %      | 0   | 100   | 30               |
| 313            | Pr    | Pump Maximum Control                        | %      | 0   | 100   | 100              |
| 31             | HL    | CH#1: Minimum Setpoint                      | °C     | 20  | 105   | 30               |
| 39             | HH    | CH#1: Maximum Setpoint                      | °C     | 20  | 105   | 95               |
| 792            | CHP   | CH (Central heating): Maximum Modulation.   | %      | 0   | 100   | 100              |
| 619            | IG    | Ignition Modulation                         | %      | 32  | 82    | 80               |
| 645            | IDT   | Generator: Flame Stabilisation Time         | sec    | 0   | 30    | 0                |
| 783            | Er    | Generator: Ignition Attempts                |        | 0   | 10    | 0                |
| 646            | 0     | Unknown Parameter                           |        | 0   | 1     | 0                |
| 527            | PU    | Fan: Pulses/Rev                             |        | 0   | 4     | 2                |
| 486            | FP    | Fan: Proportional gain adjustment           |        | 0   | 50    | 30               |
| 487            | FI    | Fan: Integral gain adjustment               |        | 0   | 50    | 9                |
| 489            | Fpl   | Fan: Minimum PWM (pulse width modulation)   | %      | 5   | 15    | 8                |
| 337            | Fr    | Modulation gradient                         | %      | 1,0 | 100,0 | 2,0              |
| 526            | FU    | Fan: Maximum Speed                          | Hz     | 50  | 150   | 100              |
| 319            | FH    | Maximum Modulation                          | %      | 1,0 | 100,0 | 100,0            |
| 346            | FL    | Minimum Modulation                          | %      | 1,0 | 100,0 | 28,0             |
| 314            | Sb    | Standby Modulation                          | %      | 0   | 100   | 26               |
| 620            | IP    | Postpurge: Fan                              | %      | 0   | 100   | 26               |
| 617            | IGL   | Ignition: Minimum Modulation                | %      | 10  | 100   | 32               |
| 618            | IGH   | Maximum Modulation Ignition                 | %      | 0   | 100   | 82               |
| 353            | HP    | CH PID: Proportional                        | °K     | 0   | 50    | 25               |
| 354            | HI    | CH PID: Integrative                         | °K     | 0   | 50    | 12               |
| 478            | Hd    | CH PID: Derivative                          | °K     | 0   | 50    | 0                |
| 34             | HY    | Burner Hysteresis                           | °K     | 5,0 | 20,0  | 5,0              |
| 336            | HS    | Temperature Gradient                        | °C/min | 1   | 30    | 10               |
| 483            | rP    | Generator: Maximum Differential Temperature | °C     | 0,0 | 50,0  | 30,0             |
| 380            | AI1   | Programmable Sensor #1                      |        | 0   | 3     | 1                |
| 777            | AFC   | APS Control (Burner air flow control)       |        | 0   | 3     | 0                |
| 623            | TS    | Temperature Sensors                         |        | 0   | 1     | 0                |
| 626            | TSE   | Flue Sensor                                 |        | 0   | 3     | 0                |
| 805            | LV    | Mains Voltage                               | Volt   | 100 | 240   | 230              |
| 2590           |       | Burner Power                                | kW     | 10  | 1000  | 108              |

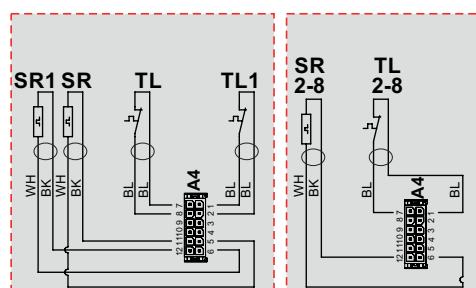
(\*) = Values for LPG



#### 4.3 PRACTICAL CONNECTION DIAGRAM


| KEY     |                                      |
|---------|--------------------------------------|
| E. ACC. | Ignition electrode                   |
| E. RIL. | Detection electrode                  |
| HSCP    | Temperature control                  |
| SR      | Heating sensor (only 1st mod.)       |
| SR 1÷7  | Local heating sensor                 |
| PF      | Flue pressure switch (only 1st mod.) |


|         |                                              |
|---------|----------------------------------------------|
| PF min  | Minimum Flue pressure switch (only 1st mod.) |
| SL      | Condensate level sensor (2nd mod.)           |
| T. ACC. | Ignition Transformation                      |
| TL      | Limit thermostat                             |
| TL 1÷7  | Local limit thermostat                       |
| VG      | Gas valve                                    |
| VM (A)  | Modulating fan power supply                  |

|        |                                |
|--------|--------------------------------|
| VM (R) | Modulating fan adjustment/Det. |
| SRR    | Global return sensor           |
| PG     | Gas pressure switch            |
| IG     | Main switch                    |
| TLG    | General limit thermostat       |
| LTLG   | General limit thermostat light |
| F      | Fuse                           |

## S TEC 440 ÷ 900 ALIM. VENT.



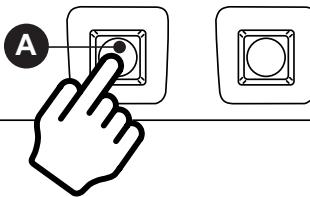
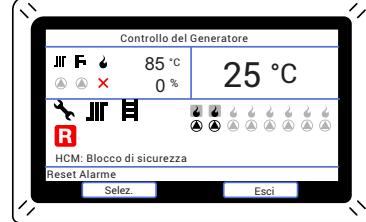
## (\*) ARES TEC 440 ÷ 900



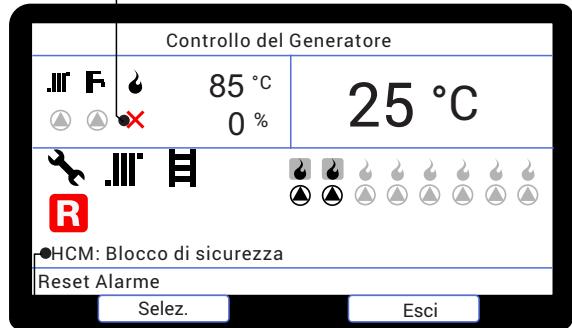
| BCM           |                                 |
|---------------|---------------------------------|
| SMG           | Global flow probe               |
| S. temp. ACC. | Storage tank temperature sensor |
| SE            | Outdoor temperature sensor      |
| INGR. ANALOG. | Analogue input                  |
| GND 0-10V ING | 0-10 V analogue input           |

|               |                                |
|---------------|--------------------------------|
| 0-10V C.P.M.  | Modulating Pump Control        |
| ALLARM SIGNAL | Alarm Outlet                   |
| Comm. P. COLL | Boiler manifold pump control   |
| Comm. P. CH   | Central heating pump control   |
| P. car DHW    | Storage tank load pump control |
| COM.          | Common                         |





### 4.4 ERROR CODE




**ATTENTION!**  
Function reserved exclusively to Authorised Service Centres.



**ATTENTION!**  
This function is explained in chapter 9 (Error codes) of the HSCP installation and maintenance manual.



segnalazione guasto



descrizione errore

When the boiler detects a fault, the alarm symbol is displayed on the screen together with the relative error code and description.

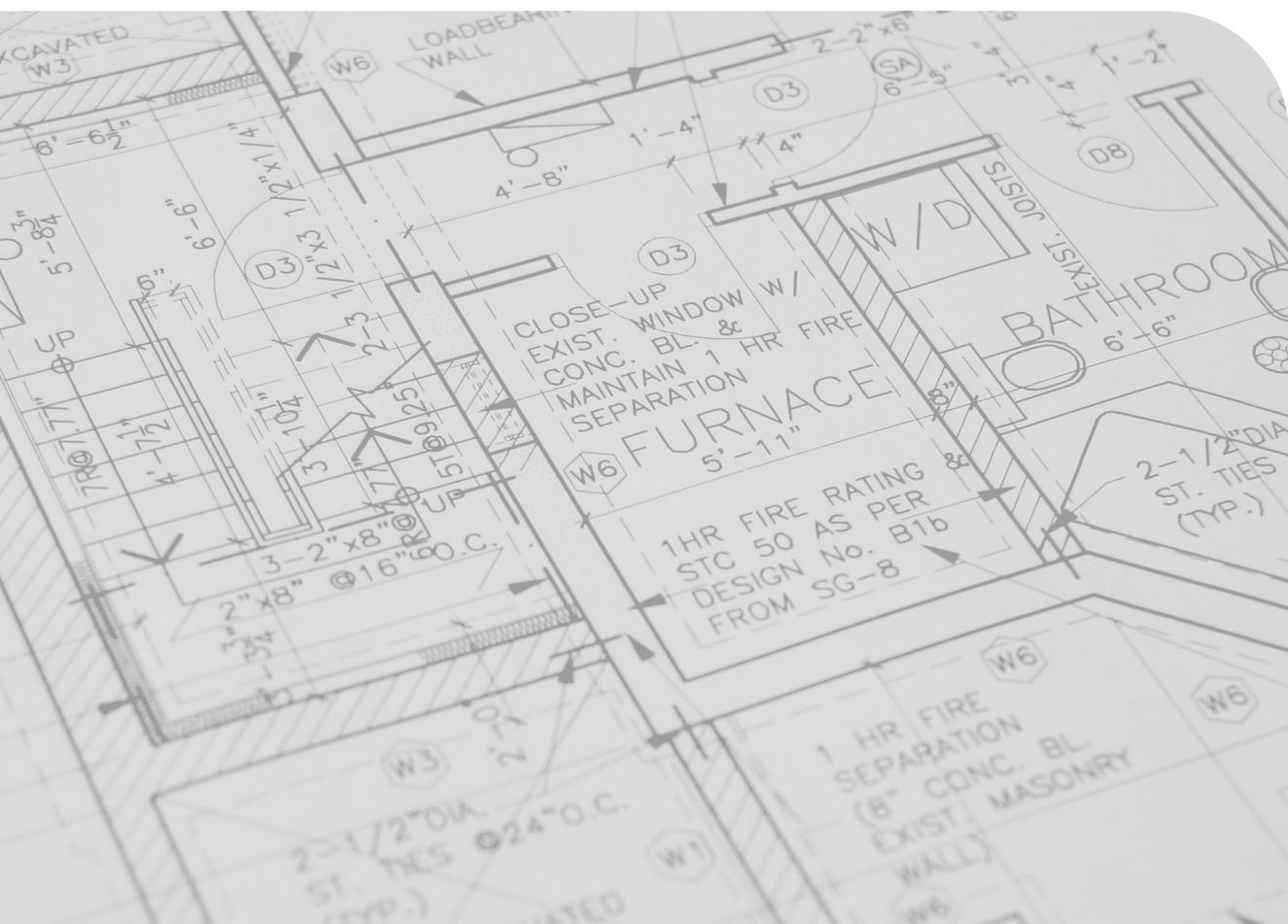
It is possible to reset the boiler by pressing key "A".







**Immergas S.p.A.**


42041 Brescello (RE) - Italy

Tel. 0522.689011

[immergas.com](http://immergas.com)



This instruction booklet is  
made of ecological paper.

